آموزشها و مقالات برق صنعتی
 

آیا تا کنون به واژه motion (حرکت) فکر کرده اید. امروزه اهمیت جابه جایی در کلیه زمینه ها احساس می شود. حرکت و سرعت تعریف جدیدی را از جهان امروز ارائه می دهد.

کنترل حرکتی در حوزه الکترونیک به معنی کنترل صحیح حرکت یک شی بر اساس فاکتور هایی مانند سرعت - مسافت- بارگیری و یا ترکیبی از کلیه موارد می باشد. امروزه سیستم های کنترل حرکتی بسیار زیادی مو جود است که می توان از stteper motors- linear stepper motors- Dc brush-... نام برد. در اینجا به توضیحات مختصری از تکنولوژی step motor ها اکتفا می کنیم.

در تئوری از stepper motor به عنوان یک شگفتی در ساده سازی یاد می شود. اساسا هر stepper یک مو تور با یک میدان مغناطیسی می باشد که خود به صورت الکتریکی رو شن شده و باعث چرخش دایرهای آرماتور آهنربا می شود.



قسمت کنترل کننده حرکت از یک کابل میکرو پروسسور جهت تولید پالس های پله ای و ایجاد سیگنال های مسیر حرکت تشکیل شده است. و هر indexer بایستی قادر به انجام دستورات اجرایی باشد.

motion driver و یا همان آمپلی فایر دستورات سیگنال های رسیده از منبع را به قدرت مورد نیاز برای چرخش پره های مو تور می شود. امروزه تعداد زیادی driver با قدرت های مختلف جریان و ولتاژ در ساختار تکنولوژی یافت می شود.

هر stepper motor یک وسیله مغناطیسی است که هر پالس دیجیتال را به یک چرخش مکانیکی مانند چرخش پره تبدیل می کند. از مزیت های آن به هزینه پایین- امنیت بالا - ساده بودن و قابل استفاده بودن در هر محیط می توان اشاره کرد.

انواع stepper motor ها :

variable reluctance

permanent magnet

hybrid

چگونگی طراحی هر driver تعیین کننده نوع خروجی هر stepper motor است که دارای سه نوع full- half- microstep می باشد.

Full step:

استاندارد طراحی دارای 50 چرخندا دندانه دار و تو لید کننده 20 پالس پله ای برای چرخش مکانیکی هر عنصر است.

Half step:

به معنی آن است که مو تور می تواند دارای 400 حرکت پله ای در هر دوره باشد. در این سیستم یک چرخنده خود دارای انرژی ست که باعث چرخش تناوبی دو چرخنده دیگر می شود. half stepping یک راه حل عملی تر در صنعت است.

microstep:

یک تکنولوژی نسبتا جدید است که جریان چرخش هر چرخنده را کنترل می کند. این کنترل در سطحی انجام می شود که تقسیم کننده ای فرئی دور تری در بین قطبها قرار گیرد.

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:38  توسط 66  | 

 

روتور قفسه سنجابی (Squirrel Cage Rotor)

از يك عده ميله مسی يا آلومينيومی كه در شيارهای محيطی استوانه آهنی‌ كار گذاشته است.كه بر دو نوع است كه نوع اول از ميله های‌ گرد تشكيل شده است و در نوع دوم از ميله های مستطيلی و يا به شكل دو دايره كه به هم متصل و يا جدا از هم هستند تشكيل ميشود .

روتور های قفسه ای يك طبقه ، گشتاور خوبی در شروع به كار ندارند .

روتور های قفسه ای دو طبقه ،  گشتاور خوبی در شروع به كار دارند .

آيا می دانيد چرا شيارها در روی روتور مورب می باشد ؟  با مورب كردن شيارها ، لرزش و صداهای‌ موتور جلوگيری می كند. همچنين از تمايل روتور به ايستادن و قفل شدن در موقع راه اندازی جلوگيری می كند .



        مزايای موتور آسنكرون با روتور قفسه ای :

1-   راه اندازی موتور آسنكرون با روتور قفسه ای بر خلاف موتور سنكرون خيلی ساده ميباشد يعنی نه به موتور فرعی و نه به جريان دائم كه در موتورهای سنكرون مورد احتياج بود ، احتياج دارد.

2-      ساختمان اين موتور ساده است .

3-      امكان افزايش بار در آنها زياد است .

4-      سرعت آن در بارهای مختلف تقريباً ثابت است .

5-      ضريب قدرت بهتری نسبت به موتور آسنكرون با روتور سيم پيچی‌ شده دارد .

معايب موتور آسنكرون با روتور قفسه ای :

1-      در موقع شروع به كار جريان زيادی‌ از شبكه ميگيرد .

2-      گشتاور شروع به كار آن كم می‌باشد .

3-      در موقعيكه بار آن به حد كافی نيست ضريب قدرتش كم است .

4-      در مقابل تغيير فشار الكتريكی حساسيت دارد .

5-      تنظيم تعداد دور آنها مشكل می باشد .

موارد استفاده و كاربرد موتورهای آسنكرون :

1-   موتور آسنكرون با روتور سنجابی كه روتور آن دارای يك قفسه هادی است :  برای قدرتهای كم و غالباً به صورت تك فاز ساخته می شوند . موارد كاربرد آن موتورهای كولر و لباسشوئی و و يخچال و غيره می باشد .

2-   موتور آسنكرون با روتور سنجابی كه روتور آن دارای دو قفسه هادی است :  دارای‌ گشتاور شروع به كار خوب و جريان راه اندازی آنها نيز نسبتاً كم است بنابراين ميتوان از اين موتور در جاهايی كه قدرت زياد احتياج است استفاده شود .

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:37  توسط 66  | 

 

مولد تحریك سری
در این ژنراتور آرمیچر با سیم پیچ تحریك به صورت سری قرار می گیرد. از آنجا كه جریان بار از سیم پیچ آرمیچر و سیم پیچ تحریك عبور كند باید سیم پیچ تحریك دارای سطح مقطع زیاد و تعداد دور كم باشد. مدار الكتریكی مولد سری و روابط آن بصورت زیر است.



IS : جریان مدار تحریك سری
RS : مقاومت سیم پیچ تحریك سری

مشخصه بی باری مولد سری: (VT = f(IL) n = const)
برای بدست آوردن مشخصه خارجی مولد سری دور مولد را به دور نامی می رسانیم، اول حداكثر مقاومت بار را در مدار قرار میدهیم در این حالت با عبور جریان كم از آرمیچر و تحریك، فوران اگر مخالف پسماند نباشد نیرومحركه القایی زیاد میشود كه در نتیجه ولتاژ خروجی افزایش می یابد با كاهش مقاومت بار جریان تحریك كه برابر با جریان بار و آرمیچر است زیاد شده و قطبها را اشباع می كند و در نتیجه فوران ثابت می ماند و چون دور هم ثابت است نیرومحركه ثابت می ماند اما ولتاژ خروجی به دلایل زیر كاهش می یابد:
1- افت ولتاژ در هادی های آرمیچر
2- افت ولتاژ در سیم پیچی تحریك
3- افت ولتاژ بر اثر عكس العمل مغناطیسی آرمیچر

كاربرد مولد سری: مورد استفاده مولد سری خیلی كم است چون ولتاژ دو سر آرمیچر بر اثر تغییر جریان بار به طور قابل ملاحظه ای تغییر می كند. در عین حال از این مولد بعنوان جبران كننده افت ولتاژ خطوط جریان مستقیم استفاده میشود.

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:37  توسط 66  | 

این مولد دارای دو سیم تحریك سری و موازی با آرمیچر می باشد.
مولد كمپوند از نظر اتصالات سیم پیچ دارای دو نوع هستند:
1- مولد كمپوند با انشعاب بلند
2- مولد كمپوند با انشعاب كوتاه
مدار الكتریكی این دو نوع كمپوند در شكل زیر نشان داده شده است
روابط تحلیل مولد كمپوند بصورت زیر است
مولدهای كمپوند از نظر جهت فوران سیم پیچ تحریك سری بصورت زیر تقسیم بندی می شود:
1- مولد كمپوند اضافی
2- مولد كمپوند نقصانی

- مولد كمپوند اضافی: فوران ناشی در این مولد فوران سیم پیچ تحریك شنت را تقویت می كند در این مولد سیم پیچ تحریك شنت نقش اصلی را بعهده دارد و سیم پیچ تحریك سری برای جبران افت ولتاژ اهمی و عكس العمل مغناطیسی آرمیچر به كار میرود.
- مولد كمپوند نقصانی: در این مولد فوران ناشی از سیم پیچ تحریك سری با فوران ناشی از سیم پیچ تحریك شنت مخالفت می كند.

مشخصه خارجی مولد كمپوند اضافی
برای مولد كمپوند اضافی در حالت بارداری ممكن است یكی از سه حالت زیر پیش آید:
1- با افزایش بار ولتاژ خروجی نیز زیاد شود این حالت را فوق كمپوند می گویند. در این حالت افزایش نیرومحركه ناشی از سیم پیچ سری بزرگتر از افت ولتاژ در اثر مقاومت و عكس العمل آرمیچر است.

2- با افزایش بار ولتاژ خروجی ثابت می ماند، در این حالت افت ولتاژ ناشی از مقاومت و عكس العمل با افزایش نیرومحركه ناشی از سیم پیچ سری جبران میشود. به این حالت كمپوند مسطح گفته میشود.

3- با افزایش بار، ولتاژ خروجی كاهش می یابد در این حالت افزایش نیرومحركه ناشی از سیم پیچ سری نمی تواند افت ولتاژها را جبران كند این حالت را زیر كمپوند می گویند. حتی در این حالت افت ولتاژ مولد كمتر از افت ولتاژ مولد شنت می باشد. شكل این مشخصه ها در زیر رسم شده است.

مشخصه بارداری مولد كمپوند نقصانی
در این مولد ولتاژ خروجی با افزایش بار به شدت كاهش می یابد بدلیل اینكه با افزایش بار جریان سیم پیچ تحریك سری زیادتر و در نتیجه فوران سیم پیچ سری بیشتر شده و میدان اصلی را تضعیف تر می كند پس ولتاژ خروجی به شدت كاهش می یابد. مدار الكتریكی این مولد و مشخصه بارداری آن در شكل زیر رسم شده است.
كاربرد مولد كمپوند
از مولد كمپوند اضافی در تحریك مولدهای نیروگاهی استفاده می شود. از مولدهای كمپوند تخت جای استفاده می شود كه نیاز به ولتاژ ثابتی باشد و فاصله بین مولد و مصرف كننده كم باشد. در صورتیكه به علت وجود فاصله بین مولد و مصرف كننده در سیمها افت ولتاژ بوجود آید از مولد كمپوند در حالت فوق استفاده می شود از مولد كمپوند نقصانی در جوشكاری استفاده می شود چون در ابتدا برای ایجاد قوس نیاز به ولتاژ بالا و بعد از برقراری قوس برای جلوگیری از افزایش جریان ولتاژ باید بشدت كاهش یابد.

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:36  توسط 66  | 

 

در این مولد مدار تحریك با آرمیچر به صورت موازی وصل می شود. جریان تحریك تابع ولتاژ خروجی و مقاومت مدار تحریك است و قسمتی (حدود 2 تا 3 درصد) از جریان آرمیچر را تشكیل میدهد. برای اینكه با جریان تحریك كم بتوان آمپر دور زیاد برای مولد تامین نمود باید تعداد دور سیم پیچ تحریك زیاد باشد و در نتیجه سطح مقطع آن باید كاهش یابد. ولتاژ خروجی مولد توسط یك مقاومت متغییر كه با سیم پیچ تحریك سری می شود تنظیم می گردد. مدار معادل الكتریكی مولد شنت بصورت زیر است:



روابط زیر نیز برای جریان آرمیچر، ولتاژ خروجی و جریان تحریك مولد شنت برقرار است
راه اندازی مولد شنت و تعیین نقطه كار: شروع كار مولد شنت بر اثر وجود پسماند مغناطیسی قطبها می باشد. یعنی ژنراتور بوسیله محرك با دور نامی به گردش در می آوریم به علت قطع خطوط قوای پس ماند توسط هادیهای آرمیچر، ولتاژی در آن القاء می شود. این ولتاژ به دو سر مدار تحریك اعمال می گردد. جریان كمی از سیم پیچ قطبها عبور می كند و درنتیجه فوران قطبها زیاد شده (در صورتیكه فوران هم جهت پسماند باشد) و نیرومحركه الكتریكی بیشتری در آرمیچر القاء میشود و ولتاژ دو سر مدار تحریك بالا می رود و مجدداٌ جریان تحریك افزایش یافته و ولتاژ القائی بزرگتر میشود. افزایش ولتاژ القائی تا جایی ادامه می یابد كه به VT = Rf.If برسد در این مقدار نیرومحركه القایی ثابت می ماند. اگر مشخصه Rf.If را رسم كنیم خطی بدست می آید كه در نقطه ای مانند B منحنی بی باری را قطع می كند به خط Rf.If خط القاء گفته میشود نقطه تقاطع این خط با منحنی نقطه كار مولد شنت می باشد.

مقاومت بحرانی و دور بحرانی: در صورتیكه مقاومت مدار تحریك آنقدر زیاد شود كه خط القاء بر منحنی بی باری مماس شود مولد حالت ناپایدار خواهد داشت و نیرومحركه نمی تواند مقدار معینی داشته باشد در این حالت می گویند مقاومت مدار تحریك بحرانی است. اگر مدار تحریك مقاومت بیش از این داشته باشد دیگر مولد تحریك نخواهد شد در صورتیكه سرعت مولد آنقدر كم باشد كه مشخصه بی باری بر خط القاء مماس شود نیز مولد به حالت ناپایدار خواهد رسید این دور نیز به دور بحرانی معروف است.
عوامل زیر سبب عدم تحریك یا عدم راه اندازی مولد شنت می شود
1- پس ماند مغناطیسی ناچیز یا صفر باشد
2- جهت جریان تحریك طوری باشد كه فوران ناشی از فوران پسماند را خنثی كند
3- مقاومت مدار تحریك از حد معینی بیشتر باشد
4- جهت گردش آرمیچر برعكس باشد كه سبب عكس شدن جریان تحریك می شود
5- دور محور از حد معین كمتر باشد
مشخصه مغناطیسی یا بی باری مولد شنت: همانطور كه در مورد مولد تحریك مستقل گفته شد مشخصه بی باری تغییرات نیرومحركه القاء شده آرمیچر نسبت به تغییرات جریان تحریك در شرایط بدون بار و دور ثابت است. مشخصه بی باری مولد شنت با مولد تحریك مستقل تفاوتی ندارد و بصورت زیر می باشد.

مشخصه بارداری یا خارجی مولد شنت: این مشخصه تغییرات ولتاژ ترمینال به ازاء تغییرات جریان بار را در شرایط دور ثابت و ثابت RF = نشان میدهد.در مولد شنت سه عامل باعث افت ولتاژ خروجی خواهد شد:
1- افت ولتاژ اهمی آرمیچر
2- افت ولتاژ ناشی از عكس العمل
3- افت ولتاژ خروجی بدلیل كاهش جریان تحریك بعلت كاهش ولتاژ خروجی ناشی از دو عامل بالا
نكته مهم دیگر در این مولد با كاهش مقاومت بار جریان IL (بار) تا مقدار معینی Icr كه معمولاٌ 2 تا 5/2 برابر جریان نامی است افزایش می یابد و سپس رو به كاهش می رود. توجیه این مسئله (یعنی كاهش جریان بار با توجه به كم شدن مقاومت بار) به این صورت است كه در نقطه برگشت منحنی اثر كاهش ولتاژ خروجی آنقدر زیاد است كه نمی تواند جریان خروجی بار زیاد شود. شكل زیر مشخصه خارجی مولد شنت را در مقایسه با مولد تحریك مستقل را نشان میدهد.

كاربرد مولد شنت: از این مولدها بعلت اینكه تنظیم ولتاژ بهتری دارند در شارژ باتری ها و تامین برق روشنایی و تغذیه سیم پیچ مولدهای نیروگاهی استفاده میشود.

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:36  توسط 66  | 

 

موتورها مصرف‎‎كننده‎‎هاي عمده برق در اغلب كارخانه‎‎ها هستند. وظيفه يك موتورالكتريكي تبديل انرژي الكتريسيته به‎ انرژي مكانيكي است. در يك موتور سه‎‎فاز AC جريان از سيم‎‎پيچ‎‎هاي موتور عبور كرده و باعث ايجاد ميدان مغناطيسي دواري مي‎شود كه اين ميدان مغناطيسي محور موتور را مي‎‎چرخاند. موتورها به‎‎‎گونه‎‎اي طراحي شده‎‎اند كه اين وظيفه را به‎‎‎خوبي انجام دهند. مهم‎‎ترين و ابتدايي‎‎ترين گزينه صرفه‎‎جويي در موتورها مربوط‎‎به‎ انتخاب آنها و استفاده از آنها مي‎‎باشد.



1- هرزگردي موتورها
بيشترين صرفه‎‎جويي مستقيم برق را مي‎‎توان با خاموش كردن موتورهاي بي‎‎بار و درنتيجه حذف تلفات بي‎‎باري به‎‎‎دست آورد. روش ساده آن درعمل نظارت دايم يا كنترل اتوماتيك است. اغلب به‎ مصرف برق در بي‎‎باري اهميت چنداني داده نمي‎‎شود درحالي‎‎كه غالباً جريان در بي‎‎باري حدود جريان در بار كامل است.
مثالي از اين نوع تلفات را مي‎‎توان در واحدهاي بافندگي يافت، جايي‎‎كه ماشين‎‎هاي دوزندگي معمولاً براي دوره‎‎هاي كوتاهي كار مي‎‎كنند. اگرچه موتورهاي اين ماشين‎‎ها نسبتاً كوچك هستند (1.3 اسب بخار) ولي چون تعداد آنها زياد است (معمولاً تعداد آنها در يك كارخانه به‎ صدها عدد مي‎‎رسد) اندازه اين تلفات قابل‎‎ملاحظه است. اگر فرض كنيم 200 موتور 1.3 اسب‎‎بخار در 90درصد زمان هرزگرد بوده و باري معادل 80درصد بار كامل بكشند، هزينه كار بيهوده موتورها با درنظر گرفتن 120ريال بهاي واحد انرژي الكتريكي ، به‎‎‎شكل زير محاسبه مي‎شود:
هزينه بي‎‎باري = 200موتور×3/1 اسب‎‎بخار × 80% بار × 6000ساعت در سال × 90% بي‎‎باري ×120ريال= 25ميليون ريال
 
با اتصال يك سوئيچ به‎ پدال چرخ‎‎ها مي‎‎توان آنها را به‎‎‎طور اتوماتيك خاموش كرد.
 
2- كاهش بازده در كم‎‎باري
وقتي از موتوري استفاده شود كه مشخصات نامي بالاتر از مقدار مورد نياز را داشته باشد، موتور در باركامل كار نمي‎‎كند و در اين‎‎حالت بازده موتور كاهش مي‎‎يابد.
استفاده از موتورهاي بزرگتر از اندازه موردنياز معمولاً به‎ دلايل زير است :
- ممكن است پرسنل مقدار بار واقعي را ندانند و بنابه احتياط موتوري بزرگتر از اندازه موردنياز انتخاب شود
- طراح يا سازنده براي اطمينان از اينكه موتور توان كافي را داشته باشد، موتوري بسيار بزرگتر از اندازه واقعي موردنياز پيشنهاد ‎‎كند و بار حداكثر درعمل به‎‎‎ندرت اتفاق ‎‎افتد. به‎‎‎علاوه اغلب موتورها مي‎‎توانند براي دوره‎‎هاي كوتاه در باري بيشتر از بار كامل نامي كار كنند. (درصورت تعدد اين وسايل اهميت مسئله بيشتر مي‎شود)
- وقتي موتور با مشخصات نامي موردنظر در دسترس نيست يك موتور بزرگتر نصب مي‎شود و حتي وقتي موتوري با اندازه نامي موردنظر پيدا مي‎شود جايگزين نشده و موتور بزرگ همچنان به‎ كار خود ادامه مي‎‎دهد.
- به‎‎‎خاطر افزايش غيرمنتظره در بار كه ممكن است هيچگاه هم رخ ندهد يك موتور بزرگتر انتخاب مي‎شود.
- نيازهاي فرآيند توليدي كاهش يافته است
در برخي بارها گشتاور راه‎‎انداز بسيار بيشتر از گشتاور دورنامي است و باعث مي‎شود موتور بزرگتر به‎‎‎كار گرفته شوند.
بايد مطمئن شد هيچ كدام از اين موارد موجب استفاده از موتورهايي بزرگتر از اندازه و درنتيجه كاهش بازده نشده باشند.
 
 
جايگزيني موتورهاي كم‎‎بار با موتورهاي كوچكتر باعث مي‎شود كه موتور كوچكتر با بار كامل داراي بازده بيشتري باشد. اين جايگزيني معمولاً براي موتورهاي بزرگتر وقتي در 3/1 تا نصف ظرفيت‎‎شان (بسته به‎ اندازه‎‎شان) كار مي‎‎كنند اقتصادي است.
براي تشخيص موتورهاي بزرگتر از ظرفيت مورد نياز به‎ اندازه‎گيري‎‎ الكتريكي احتياج است. وات‎‎متر مناسب‎‎ترين وسيله‎‎است.
روش ديگر، اندازه‎گيري سرعت واقعي و مقايسه آن با سرعت نامي است. بار جزئي به‎‎‎عنوان درصدي از بار كامل نامي را مي‎‎توان از تقسيم شيب(سرعت) عمليات بر شيب بار كامل به‎‎‎دست آورد. رابطه بين بار و شيب تقريباً خطي است. معمولاً در اين موارد مي‎‎توان براي جلوگيري از سرمايه‎‎گذاري جديد اينگونه موتورها را با ديگر موتورهاي موجود در كارخانه جايگزين نمود كه تنها هزينه آن اتصالات و صفحه‎‎هاي تنظيم‎‎كننده هستند. اگر اين تغييرات را بتوان همزمان با تعميرات برنامه‎‎ريزي‎‎شده در كارخانه انجام داد بازهم هزينه‎‎ها كاهش مي‎‎يابد.
                                          
3- موتورهاي پربازده
بازگشت سرمايه قيمت اضافي پرداختي جهت خريد موتورهاي پربازده، معمولاً كمتراز دو سال كاركرد موتور به‎‎‎ازاي 4000 ساعت كاركرد سالانه و در 75درصد بار مي‎باشد. (بازگشت سرمايه نسبت به‎ موتورهاي قديمي و غير استاندارد به‎ كمتر از شش ماه نيز مي‎‎رسد) درمواردي كه بار موتور سبك يا ساعت كاركرد آن كم است يا بارهاي تناوبي استثنائاتي وجود دارد. بيشترين صرفه‎‎جويي در رنج موتورهاي 1 تا 20 اسب‎‎بخار به‎‎‎دست مي‎‎آيد. در توان بيشتر از 20 اسب‎‎بخار افزايش بازده كاهش مي‎‎يابد و موتورهاي موجود بيش از 200 اسب‎‎بخار تقريباً داراي بازده كافي هستند.
سازندگان معمولاً موتورهاي با طراحي استاندارد و قيمت تمام‎‎شده كم‎‎تر را عرضه مي‎‎كنند. به‎‎‎خاطر رقابت شديد اين نوع موتورها بازده كمي دارند. آنها ضريب قدرت پايين‎‎تري دارند، قابل تعمير نبوده و نمي‎‎توان به‎‎‎راحتي سيم‎‎پيچ آنها را مجدداً پيچيد.
در موتورهاي پربازده با استفاده از ورقه‎‎هاي استيل نازكتر در استاتور و روتور، استفاده از استيل با خواص الكترومغناطيسي بهتر، استفاده از فن‎‎هاي كوچكتر با بازده بيشتر و بهبود طراحي شكاف روتور بازده افزايش يافته است. تمام اين روش‎‎ها باعث افزايش مصرف مواد اوليه و درنتيجه افزايش هزينه‎‎ مواد يا هزينه‎‎هاي ساخت مي‎شود و بنابراين قيمت تمام شده موتور زياد مي‎شود. بااين وجود 30-20 درصد اضافه هزينه اوليه با كاهش هزينه‎‎هاي عملياتي جبران مي‎شود. از ديگر مزاياي موتورهاي پربازده اثر كم بر عملكرد موتور به‎‎‎هنگام نوسانات ولتاژ و بار جزئي است. 
محاسبه بازگشت هزينه اين موتورها به‎‎‎خاطر متغيرهاي درگير پيچيده است. براي تعيين هزينه عملياتي موتور بايد توان مصرفي توسط موتور در ساعات كار آن و قيمت انرژي الكتريكي ضرب شود. هريك از اين فاكتورها  متغيرهاي مخصوص به‎‎‎خود را دارند كه شامل تغيير در برنامه زمانبندي توليد، تغيير در بار موتور و جريمه‎‎هاي ديماند مي‎‎باشند. پرداختن به‎ برخي از اين عوامل مشكل است.
حتي وقتي ميزان صرفه‎‎جويي محاسبه مي‎شود از آنجاكه بازده واقعي يك موتور معمولاً ناشناخته است ممكن است اين محاسبات دچار خطا شوند. چون همه سازنده‎‎ها از تكنيك‎‎‎‎هاي يكساني براي اندازه‎گيري بازده موتورها استفاده نمي‎‎كنند ، بنابراين مشخصات نامي درج‎‎شده بروي پلاك را نمي‎‎‎توان با هم مقايسه كرد. به‎عنوان نمونه در آمريكا منظور بيشتر سازنده‎‎ها‎‎ از بازده نامي رنجي از بازده‎‎ها است كه بازده موتور در آن قرار مي‎‎گيرد. از تكنيك‎‎هاي آماري مختلفي براي تعيين حداقل بازده يك موتور با هر بازده نامي استفاده مي‎شود. به‎‎‎عنوان مثال يك موتور با بازده نامي 90.2 % داراي حداقل بازده نامي 88.5 % است.
عده زيادي موتورهاي پربازده را بدون اينكه درصدد توجيه برگشت هزينه آن باشند ، استفاده مي‎كنند ، مگر درمورد موتورهاي بزرگتر. معمولاً مدت بازگشت هزينه تقريباً يك سال است.
بازده موتورها از مشخصات نامي آنها متفاوت است(به‎‎‎دست نمي‎‎آيد). مثلاً يك موتور       100-hp.1800-rpm سرپوشيده با فن خنك‎‎ساز از يك سازنده داراي يك حداقل بازده تضمين‎‎شده معادل 90.2درصد در بار كامل در مدل استاندارد و 94.3درصد در مدل بازده بالا است. موتور هم‎‎اندازه آن از يك سازنده ديگر داراي همان بازده 90.2درصد در مدل استاندارد و حداقل بازده 91درصد در مدل بازده بالا است. براي تعيين بازده واقعي يك موتور خاص بايد از تجهيزات تست پيچيده‎‎اي استفاده كرد.
به‎‎‎خاطر اين اختلاف‎‎ها، به‎‎‎هنگام ارزيابي ميزان صرفه‎‎جويي، استفاده از حداقل بازده تضمين‎‎شده قابل اطمينان‎‎تر است چون همه موتورها بايد برابر يا بزرگتر از اين اندازه باشند.
 
4- درايوهاي تنظيم سرعت
وقتي تجهيزات بتوانند در سرعت كاهش‎‎يافته كار كنند چند گزينه قابل انتخاب است.
مثال‎‎هاي ذيل نمونه‎‎هايي براي همه صنايع هستند
 
1-4- موتورهاي AC فركانس متغير (با تنظيم فركانس)
وقتي پمپ‎‎هاي گريز از مركز، فن‎‎ها و دمنده‎‎ها در سرعت ثابت كار مي‎‎كنند و خروجي با استفاده از والوها و مسدود‎‎كننده‎‎ها كنترل مي‎شود موتور صرفنظر از مقدار خروجي در نزديكي بار كامل كار مي‎‎كند كه باعث مي‎شود انرژي زيادي توسط اين مسدودكننده‎‎ها و والوها تلف شود. اگر اين تجهيزات بتوانند همواره در سرعت مورد نياز كار كنند مقدار زيادي انرژي صرفه‎‎جويي مي‎شود. درايوهاي تنظيم سرعت باعث مي‎شوند تجهيزات باتوجه به نياز سيستم در حالت بهينه عمل كنند.
كنترلرهاي AC تنظيم فركانس (فركانس متغيير) وسايل پيچيده‎‎اي بوده و گرانقيمت هستند. بااين‎‎حال مي‎‎توانند به‎‎‎راحتي به‎ موتورهاي القايي AC استاندارد اضافه شوند. با هزينه تجهيزات كمتر و هزينه‎‎هاي الكتريكي بيشتر (با كاهش هزينه تجهيزات و افزايش هزينه‎‎هاي الكتريكي) كاربرد اين وسايل در اغلب موارد اقتصادي مي‎شود. بسياري از انواع پمپ‎‎ها، فن‎‎ها، ميكسچرها، نقاله‎‎ها، خشك‎‎كننده‎‎ها، خردكننده‎‎ها (سنگ‎‎شكن‎‎ها) آسياب‎‎ها، صافي‎‎ها و برخي انواع كمپرسورها، دمنده‎‎ها و همزن‎‎ها در سرعت‎‎هاي مختلف با وسايل تنظيم سرعت كار مي‎‎كنند.
تجهيزات مجهز به‎ تنظيم سرعت كمتراز نصف تجهيزات مجهز به‎ مسدودكننده انرژي مصرف مي‎‎كنند.
در عمل بايد براي محاسبه دقيق صرفه‎‎جويي حاصل براساس كيلووات بازده موتور هم درنظر گرفته شود. بازده موتور تا زير50درصد ظرفيت نامي افت مي‎‎كند.


 
2-4-درايوهاي DC حالت جامد (نيمه‎‎هادي)
مي‎‎توان با تنظيم سرعت با استفاده از درايوهاي DC صرفه‎‎جويي‎‎هاي مشابهي را انجام داد. هزينه اوليه نسبت‎‎به‎ درايوهاي AC تنظيم فركانس بيشتر است به‎‎‎خصوص وقتي مستقيماً بتوان از كنترلرهاي الكتريكي در موتور ACاستفاده كرد. تعمير و نگهداري كموتاتور و زغال نيز هزينه زيادي در درايوهاي DC دربردارد. همچنين سيستم‎‎هاي DC نسبت‎‎به‎ هواي خورنده و كثيف (مملو ازذرات) كه در يك محيط صنعتي معمول است حساس‎‎ترند.
بنابراين درايوهاي AC معمولاً ترجيح داده مي‎شوند مگر در مواردي كه شرايط عملياتي برخي از مشخصه‎‎هاي سيستم‎‎هاي DC از قبيل تنظيم سرعت خيلي دقيق، معكوس كردن سريع جهت، يا گشتاور ثابت در رنج سرعت نامي مورد نياز باشد.از اين درايوها در ماشين‎‎هاي حديده ((drawing machins، پوشش‎‎دهنده‎‎ها (لعاب‎‎دهنده‎‎ها coaters) ماشين‎‎هاي تورق (laminators)، دستگاه‎‎هاي سيم‎‎پيچي (winders) و ساير تجهيزات استفاده مي‎شود.
ساير تكنيك‎‎هاي تغيير سرعت موتور عبارت است از درايوهاي لغزش (slip) الكترومكانيكي، درايوهاي سيال. و موتورهاي القايي (موتورهاي با روتور سيم‎‎پيچي‎‎شده). اين درايوها با تغيير درجه لغزش بين درايو و عنصر درحال حركت سرعت را كنترل مي‎‎كنند. چون قسمتي از انرژي مكانيكي كه تبديل به‎ بار نمي‎‎شود به‎ حرارت تبديل مي‎گردد اين درايوها داراي بازده كمي بوده و معمولاً به‎‎‎خاطر مشخصه‎‎هاي خود در كاربردهاي خاصي به‎‎‎كار برده مي‎‎شوند. مثلاً ممكن است از درايوهاي سيال در سنگ‎‎شكن‎‎ها (خردكننده‎‎ها) استفاده شوند چون داراي ظرفيت توان بالا، انتقال گشتاور آسان، توانايي مقاومت دربرابر بارهاي شوك، قابليت مقاومت در سيكل‎‎هاي سكون (ازكارافتادگي)، ماهيت ايمني آن و قابليت تحمل هواي ساينده را دارند.
چون درايوهاي AC وDC  سرعت چرخنده اصلي را تغيير مي‎‎دهند براي صرفه‎‎جويي در انرژي ترجيح داده مي‎‎شوند.
 
3-4-درايوهاي مكانيكي
درايوهاي تنظيم سرعت مكانيكي ساده‎‎ترين و ارزانترين وسايل تغيير سرعت هستند. اين نوع چرخ‎‎هاي قابل تنظيم مي‎‎توانند در امتداد محور باز و بسته شوند و درنتيجه ميزان تماس چرخ را با تسمه تنظيم كنند.
مزيت عمده درايوهاي مكانيكي سادگي آنها ، سهولت تعمير و نگهداري و هزينه پايين آنها است. يك سرويس تعمير و نگهداري درحد متوسط و كنترل سرعت با دقت كم (معمولاً 5درصد) از خصوصيات اين درايوها است.
درايوهاي تسمه‎‎اي براي گشتاورهاي كم تا متوسط (100اسب‎‎بخار) در دسترس هستند. بازده درايوهاي تسمه‎‎اي 95 درصد است و نسبت كاهش سرعت تا 10به‎ 1 مي‎‎رسد.
از درايوهاي زنجيري فلزي در گشتاور زياد استفاده مي‎شود. اين درايوها مشابه درايوهاي تسمه‎‎اي هستند فقط به‎‎‎جاي تسمه‎‎هاي لاستيكي از تسمه‎‎هاي فلزي استفاده شده است.
 
4-4-كاهش يك سرعته
 وقتي فقط با يك كاهش سرعت به‎ نتيجه رضايت‎‎بخش برسيم گزينه ارزانتري را مي‎‎توانيم انتخاب كنيم. اگرچه سرعت‎‎هاي متغيير اين مزيت را دارند كه در وضعيت‎‎هاي مختلف مي‎‎توان سرعت بهينه را به‎‎‎كار برد، در مواقعي كه رنج تغيير سرعت محدود است و زماني كه موتور بايد در سرعت پايين‎‎تري كار كند نسبت ‎‎به‎ زمان كل كار موتور كم است احتمالاً يك كاهنده تك‎‎سرعته ازنظر هزينه و اثربخشي به‎‎‎صرفه‎‎تر است.
درايوهاي تسمه‎‎اي: در اين درايوها يك (يك‎‎بار) كاهش سرعت با كمترين هزينه همراه است چون به‎‎‎راحتي مي‎‎توان چرخ‎‎ها را عوض كرد. ازآنجاكه با نصب دوباره چرخ‎‎هاي قديمي براحتي مي‎‎توان تغييرات را بازگرداند از اين روش وقتي استفاده مي‎شود كه كاهش خروجي براي يك دوره معين موردنياز است. مثلاً وقتي سطح توليد براي يك زمان نامشخص كاهش يافته ولي ممكن است در آينده نياز باشد كه به‎ ظرفيت اوليه برگرديم.
كاهش دور توسط چرخ‎‎دنده: حالت‎‎هاي مشابه‎‎اي را توسط تغيير چرخ‎‎دنده مي‎‎توان به‎‎‎كار برد.
تعويض موتور: درمواردي كه يك بار كاهش سرعت موردنياز است يك موتور با سرعت كم‎‎تر را نيز مي‎‎توان جايگزين‎‎نمود.
 
5-4-موتورهاي دوسرعته
موتور دوسرعته يك راه‎‎حل اقتصادي ميانه درمقايسه با استفاده از‎ درايوهاي چندسرعته و سرعت ثابت است.
همانطوركه در مثال‎‎هاي قبلي بيان شد چون توان مصرفي با مكعب (توان سوم) سرعت متناسب است، صرفه‎‎جويي در انرژي اهميت زيادي دارد. درعمل يك افزايش جزئي به‎‎‎خاطر تلفات اصطكاك رخ مي‎‎دهد. از اين روش و استفاده از روش‎‎هاي كنترلي ديگر مي‎‎توان خروجي را در يك رنج محدود كنترل كرد.
دوسرعت را مي‎‎توان از يك سيم‎‎پيچ به‎‎‎دست آورد ولي سرعت پاييني بايد نصف سرعت بالايي باشد. مثلاً سرعت‎‎هاي موتور به‎ اين شكل است 900/1800 ، 600/1200 ، 1800/3600
وقتي به نسبت‎‎هاي ديگري از سرعت نياز است استفاده از يك استاتور دو سيم‎‎پيچه ضروري است. از موتورهاي قفسي چندسرعته (multispeed squirrel cage motors) نيز كه داراي سه يا چهار سرعت همزمان هستند مي‎‎توان استفاده نمود. 
قيمت موتورهاي دوسرعته تقريباً دو برابر موتورهاي تك‎‎سرعته است. اگر يك موتور بتواند در دوره‎‎هاي زماني محسوسي با سرعت كم‎‎تر كار كند صرفه‎‎جويي حاصله سرمايه‎‎گذاري اضافي را توجيه مي‎‎كند. در موتورهاي چندسرعته استارترهاي گرانقيمتي موردنياز است چون اندازه محافظ‎‎هاي اضافه‎‎بار در سرعت‎‎هاي مختلف متفاوت است.

 
5-كاهش بار
مسلماً كاهش بار موتور يكي از بهترين روش‎‎هاي كاهش هزينه‎‎هاي الكتريكي است. تعمير و نگهداري مناسب تجهيزات نيز مي‎‎تواند با ازبين بردن تلفات ناشي از اصطكاك در تجهيزات ناميزان (غير هم‎‎محور)، ياتاقان‎‎هاي سخت‎‎شده و نقاله‎‎ها، بار موتور را كاهش دهد. روغن‎‎كاري مناسب قسمت‎‎هاي متحرك مانند ياتاقان‎‎ها و زنجيرها تلفات ناشي از اصطكاك را به‎ حداقل مي‎‎رساند. جايگزيني ياتاقان‎‎هاي غلطكي و بلبرينگ‎‎ها با ياتاقان‎‎هاي تخت به‎‎‎خصوص در شافت‎‎هاي انتقال نيز روش مؤثري است.
 
6- گشتاور راه‎‎اندازي زياد
در بارهايي كه گشتاور استارت بزرگي نياز دارند بايد از يك موتورB -NEMA (رايج‎‎ترين موتور مورد استفاده در صنعت) يا موتورA  -NEMA استفاده كرد. درجايي‎‎كه بارهاي با اينرسي زياد وجود دارد مي‎‎توان از موتورهاي كوچكتري كه به‎‎‎گونه‎‎اي طراحي شده‎‎اند كه قابليت گشتاور زياد را دارند استفاده كرد. يك موتور NEMA-B مي‎‎تواند ازعهده بار زياد استارت برآيد ولي وقتي بار به‎ سرعت نهايي رسيد موتور در كمتراز ظرفيت نامي كار مي‎‎كند. ولي انتخاب يك موتور كوجكتر از از نوع  C-NEMA يا NEMA-D ضمن اينكه همان گشتاور راه‎‎انداز را توليد كرده ، در شرايط معمول عملياتي نيز نزديك بار كامل نامي كار مي‎‎كند.


 
7- موتورهايي كه مجدداً پيچيده مي‎‎شوند (موتورهاي سوخته‎‎اي كه سيم‎‎پيچي آنها عوض مي‎شود)
بازده موتورهايي كه براي بار دوم پيچيده مي‎‎شوند كاهش مي‎‎يابد كه البته مقدار اين كاهش بستگي به‎ كارگاهي دارد كه موتور در آن پيچيده شده‎‎است، چون كارگاه‎‎هاي سيم‎‎پيچي لزوماً از بهترين روشي كه عملكرد اوليه موتور را حفظ كند استفاده نمي‎‎كنند. در برخي موارد به‎‎‎دليل بازده كم به‎‎‎خصوص در موتورهاي كوچك پيچيدن دوباره موتور توجيه‎‎پذير نيست.
درحالت ايده‎‎آل بايد بازده موتور قبل و بعد از پيچيدن آن با هم مقايسه شود. يك روش تقريباً ساده براي ارزيابي كيفيت موتور پيچيده‎‎شده مقايسه جريان بي‎‎باري موتور است، اين مقدار در موتورهايي كه به‎‎‎خوبي پيچيده نشده باشند افزايش مي‎‎يابد، بررسي روشي كه دركارگاه سيم‎‎پيچي استفاده مي‎شود، نيز مي‎‎تواند كيفيت كار را مشخص كند. در زير برخي نكاتي كه بايد موردتوجه قرارگيرد آمده است :
-     وقتي موتوري را براي پيچيدن مجدد باز مي‎‎كنند، عايق بين ورقه‎‎ها خراب شده و باعث افزايش تلفات جريان گردابي مي‎‎گردد مگر اينكه بازكردن (سوزاندن) عايق در كوره‎‎اي با دماي قابل تنظيم انجام شده و ورقه‎‎هاي عايق غيرآلي جايگزين گردد. 
-     گداختن و سوزاندن سيم‎‎پيچ كهنه (خراب‎‎شده) در دماي كنترل نشده يا استفاده از يك مشعل دستي براي نرم‎‎كردن و خردكردن لاك بين سيم‎‎ها به‎‎‎منظور بازكردن آسان‎‎تر سيم‎‎پيچ به‎ اين معني است كه كار در اين كارگاه به‎‎‎خوبي انجام نمي‎‎شود و بايد به‎ كارگاه ديگري براي پيچيدن موتور مراجعه كرد.
-         اگر در نتيجه بازكردن و سوزاندن نامناسب تلفات هسته افزايش يابد، موتور در دماي بيشتري كار مي‎‎كند و زودتر از موعد خراب مي‎شود.
-     اگر تعداد دورهاي سيم‎‎پيچ در استاتور كاهش يابد تلفات هسته استاتور افزايش مي‎‎يابد اين تلفات درنتيجه جريان نشتي (هارمونيك) القا شده توسط جريان بار به‎‎‎وجود مي‎‎آيد و اندازه آن برابر با توان دوم جريان بار است.
-         در پيچيدن موتور اگر از سيم‎‎هاي با قطر كوچكتر استفاده شود، مقاومت و درنتيجه تلفات   افزايش مي‎‎يابد.
روش‎‎هاي پيچيدن موتور در كارگاه‎‎هاي مختلف تعميراتي متفاوت است بنابراين قبل‎‎از تصميم‎ به‎ پيچيدن دوباره موتور بايد كارگاه‎‎ها كاملاً بررسي و بهترين كارگاه انتخاب شود.
شركت Wanlass يك روش پيچيدن موتور ارائه كرده كه مدعي است بازده را تا ده درصد افزايش مي‎‎دهد اين روش برمبناي جايگزيني سيم‎‎پيچ موجود با دو سيم‎‎پيچ است كه به‎گونه‎‎اي طراحي شده‎‎اند كه سرعت موتور را متناسب‎‎با بار تغيير دهد. درمورد ادعاي بهبود بازده بحث‎‎هاي زيادي صورت گرفته و درحالي‎‎كه از عرضه موتورهاي Wanlass بيش‎‎از يك دهه مي‎‎گذرد استفاده كننده‎‎هاي عمده معتقدند اين نوع طراحي بهبودي را كه مي‎‎توان ازطريق تكنيك‎‎هاي متعارف طراحي موتور و سيم‎‎پيچ به‎‎‎دست آورد در صنعت موتور ارائه نكرده است.
 
8- ژنراتور موتورها
يكسوكننده‎‎هاي نيمه‎‎هادي يك منبع مناسب جريان مستقيم DC براي موتورهاي DC يا ديگر استفاده‎‎هاي از جريان DC هستند، ژنراتور موتورهايي كه معمولاً براي جريان مستقيم به‎‎‎كار مي‎‎روند قطعاً نسبت‎‎به‎ يكسوكننده‎‎هاي نيمه‎‎هادي بازده كمتري دارند بازده موتور ژنراتور در بار كامل حدود 70 درصد است در حاليكه بازده يكسوكننده‎‎هاي نيمه‎‎هادي تقريباً 96 دصد در بار كامل است. وقتي ژنراتور موتوري در كمتراز بار نامي كار كند بازده آن به‎‎‎طور قابل‎‎ملاحظه‎‎اي كاهش مي‎‎يابد چون بازده آن برابر با حاصل‎‎ضرب بازده ژنراتور و موتور است.
 
9- تسمه‎‎ها (Belts)
بازده درايوهاي V-belt تأثير زيادي در بازده موتور دارد. عوامل تأثيرگذار در بازده V-belt عبارتنداز:
1- Overbelting: تسمه‎‎هاي با مشخصات نامي بالاتر باعث افزايش كارايي مي‎شوند
2- تنش (فشار): فشار نامناسب باعث كاهش بازده تا 10 درصد مي‎شود. بهترين فشار براي يك V-belt كمترين فشاري است كه در آن تسمه در بار كامل نلغزد.
3- اصطكاك: تلفات اصطكاك اضافي درنتيجه ناميزان بودن(غيرهم‎‎محوري)، فرسودگي چرخ‎‎ها تهويه نامطلوب يا ماليده شدن تسمه‎‎ها به‎ چيزي به‎‎‎وجود مي‎‎آيند.
4-  قطر چرخ: هرچه قطر چرخ بزرگتر باشد بازده افزايش مي‎يابد.
جايگزيني V-beltهاي شياردار با V-beltهاي متعارف صرفه‎‎جويي زيادي دربردارد. يك V-belt درمعرض تنش فشاري بزرگي متناسب با قطر چرخ قراردارد. ازآنجاكه در V-beltهاي شياردار در قسمت تحت‎‎فشار از ماده كمتري استفاده شده تغيير شكل لاستيك و تنش‎‎هاي فشاري به‎ حداقل مي‎‎رسد بنابراين بازده عملياتي در V-beltهاي شياردار بيشتر مي‎شود.
اگر هزينه عملياتي سالانه يك موتور 60 اسب‎‎بخار (براي 6000ساعت) 18000 دلار باشد حتي يك درصد بهبود در بازده موتور باعث 180 دلار صرفه‎‎جويي در سال مي‎شود. هزينه اضافي براي 6 تسمه با اندازه 128 تقريباً 7 دلار است

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:35  توسط 66  | 

تبديل انرژي الكترومكانيكي گردان را ماشينهاي الكتريكي مي گويند.
طبقه بندي ماشينهاي الكتريكي
ماشينهاي الكتريكي به دو طريق دسته بندي مي شوند:
1- از نظر نوع جريان الكتريكي
الف- ماشينهاي الكتريكي جريان مستقيم
ب- ماشينهاي الكتريكي جريان متناوب
2- از نظر نوع تبديل انرژي
الف- مولدهاي الكتريكي كه انرژي مكانيكي را به انرژي الكتريكي تبديل مي كنند
ب- موتورهاي الكتريكي كه انرژي الكتريكي را به انرژي مكانيكي تبديل مي كنند

به طور كلي ماشينهاي الكتريكي جزء وسايل تبديل انرژي غير خطي هستند يعني هر تغيير در ورودي هميشه به يك نسبت در خروجي ظاهر نمي شود.
مولد ساده جريان مستقيم
يك مولد ساده جريان مستقيم از چهار قسمت اصلي زير تشكيل شده است
1- قطبهاي مغناطيسي: كه وظيفه ايجاد ميدان مغناطيسي مولد را بعهده دارد و مي تواند بصورت آهنرباي دائم و يا آهنرباي الكتريكي باشد
2- هاديها: براي ايجاد ولتاژ القايي به كار گرفته ميشود
3- كموتاتور: در ساده ترين حالت از دو نيم استوانه مسي كه توسط ميكا نسبت به يكديگر عايق شده اند تشكيل مي گردد، وظيفه يك طرفه كردن ولتاژ و جريان القايي را در خارج از مولد بعهده دارد.
4- جاروبك: جهت انتقال جريان الكتريكي از هاديها به مصرف كننده استفاده ميشود شكل زير مولد ساده جريان مستقيم را نشان ميدهد.

طرز كار مولد ساده جريان مستقيم: با حركت هاديها در فضاي ما بين قطبها باعث ميشود ميدان مغناطيسي توسط هاديها قطع ميشود بدين ترتيب مطابق پديده القاء در هاديها ولتاژ القاء ميشود.ابتدا و انتهاي هر كلاف به يك نيم استوانه مسي يا يك تيغه كوموتاتور وصل ميشود روي تيغه هاي كوموتاتور دو عدد جاروبك بطور ثابت قرار داشته و با حركت هاديها تيغه هاي كموتاتور زير جاروبك مي لغزند، بدين ترتيب در ژنراتورهاي جريان مستقيم از طريق كوموتاتور ولتاژ القاء شده طوري به جاروبكها منتقل مي شود كه هميشه يكي از جاروبكها داراي پلاريته مثبت و ديگري داراي پلاريته منفي است. شكل موج ولتاژ القاء شده در اين مولد ساده بصورت زير مي باشد.

براي افزايش سطح ولتاژ القاء شده و بهبود يكسوسازي بمنظور داشتن ولتاژ با دامنه ثابت بايد تعداد كلافها را افزايش داد و كلافها را به كمك تيغه هاي كوموتاتور سري كنيم.
چگونگي تغيير پلاريته ولتاژ القايي در مولد ساده
در مولد جريان مستقيم تغيير پلاريته ولتاژ خروجي عملاٌ در صورت ايجاد يكي از دو حالت زير ممكن مي شود:
1- جهت چرخش آرميچر عوض شود
2- جهت جريان در سيم پيچ قطبها تغيير كند در صورتيكه قطبها از نوع مغناطيس دائم نباشد
چگونگي تغيير دامنه ولتاژ القايي در مولد ساده
براي افزايش دامنه ولتاژ القا شده دو روش ممكن است:
1- افزايش سرعت چرخش آرميچر كه باعث افزايش ولتاژ بصورت خطي مي شود

2- افزايش جريان تحريك كه باعث افزايش ولتاژ مولد بصورت غير خطي مي شود

موتور ساده جريان مستقيم
موتور ساده از نظر ساختماني مانند مولد ساده جريان مستقيم مي باشد فقط نحوه كار آن با مولد ساده جريان مستقيم تفاوت دارد. در موتور ساده هاديها از طريق كوموتاتور و جاروبكها به يك منبع جريان مستقيم متصل مي شود در اينصورت جرياني از هاديها عبور كرده و در نتيجه مطابق نيروي لورنس به هاديها نيروي وارد ميشود و آنها به حركت در مي آيد.
نحوه ايجاد نيرو و گشتاور در موتور ساده: در صورتيكه از يك كلاف تك حلقه كه بين قطبهاي يك مغناطيس قرار دارد جريان الكتريكي عبور كند مطابق شكل به بازوي سمت راست نيروي به سمت بالا و به بازوي سمت چپ نيروي بسمت پايين وارد مي شود با وارد شدن دو نيروي مختلف الجهت به دو طرف كلاف طبيعي است كه كلاف حول محورش شروع به دوران خواهد نمود يعني وارد آمدن زوج نيرو موجب ايجاد گشتاور لازم شده است.
در اين موتور ساده اگر صفحه كلاف عمود بر خطوط ميدان مغناطيسي قرار گيرد به آن گشتاوري وارد نميشود در ضمن كه گشتاور وارد شده نيز دامنه يكنواخت ندارد براي رفع شدن اين معايب مي بايست تعداد كلافها و تيغه هاي كوموتاتور را افزايش داد كلافها در زاويه هاي مختلف قرار مي گيرد و با هم توسط تيغه هاي كوموتاتور سري مي شود.
تغيير جهت گردش در موتور ساده DC: تغيير جهت گردش موتور ساده به دو روش زير ممكن است:
1- تغيير جهت جريان در كلاف كه با تغيير پلاريته ولتاژ منبع از خارج موتور ميسر است
2- تغيير قطبهاي مغناطيسي كه با تغيير جهت جريان در سيم پيچي تحريك ممكن است
ساختمان ماشينهاي جريان مستقيم
اجزاء تشكيل دهنده ماشينهاي جريان مستقيم را ميتوان به صورت زير دسته بندي كرد:
1- قسمت ساكن شامل قطبها و بدنه
2- قسمت گردان (آرميچر)
3- مجموعه جاروبك و جاروبك نگهدارها
هر كدام از قسمتهاي فوق بطور خلاصه توضيح داده مي شود
1- اجزاء ساكن ماشينهاي جريان مستقيم: قسمتهاي ساكن جريان مستقيم شامل اجزاء زير هستند:
الف- قطبهاي اصلي
ب- قطبهاي كمكي
ج- بدنه
- قطبهاي اصلي: وظيفه اين قسمت تامين ميدان مغناطيسي مورد نياز ماشين است. قطبهاي اصلي خود شامل قسمتهاي زير مي باشد:
- هسته قطب: از ورقهاي فولاد الكتريكي به ضخامت حدود 5/0 تا 65/0 ميلي متر با خاصيت مغناطيسي قابل قبول تشكيل مي شود.
- كفشك قطب: شكل قطب به نحوي است كه سطح مقطع كوچكتر براي سيم پيچ اختصاص داده مي شود و قسمت بزرگتر كه كفشك قطبي نام دارد سبب شكل دادن ميدان مغناطيسي و سهولت هدايت فوران مغناطيسي به فاصله هوايي مي شود.
- سيم پيچ تحريك: يا سيم پيچ قطب اصلي كه دور هسته قطب پيچيده مي شود، براي جريانهاي كم بايد تعداد دور سيم پيچ تحريك زياد باشد و سطح مقطع آن كم و برا ي جريانهاي زياد تعداد دور كم براي سيم پيچ لازم است و با سطح مقطع زياد
- قطبهاي كمكي: قطبهاي كمكي در ماشينهاي جريان مستقيم از هسته و سيم پيچ تشكيل مي شوند، هسته قطبهاي كمكي را معمولاٌ از فولاد يكپارچه مي سازند. سيم پيچي قطبهاي كمكي نيز با تعداد دور كم و سطح مقطع زياد پيچيده مي شوند.
- بدنه: قطبهاي اصلي، كمكي، جاروبك نگهدارها روي بدنه ماشين محكم مي شوند و بوسيله ماشين روي پايه اش نصب مي گردد. قسمتي از بدنه را هسته آهني تشكيل مي دهد كه براي هدايت فوران مغناطيسي قطبهاي اصلي و كمكي بكار مي رود اين قسمت طوق بكار مي رود. شكلهاي زير قطب اصلي و كمكي ماشين جريان مستقيم را نشان ميدهد.
2- قسمت گردان يا آرميچر: در ماشينهاي جريان مستقيم قسمت گردنده را القاء شوند يا آرميچر مي نامند كه از اجزاء زير تشكيل شده است:
الف- هسته آرميچر
ب- سيم پيچي آرميچر
ج- كلكتور يا يكسوكننده مكانيكي
د- محور
ﻫ- پروانه خنك كننده
- سيم پيچي آرميچر: از كلافهاي مشابهي تشكيل مي شود كه با الگوي مناسب تهيه و در شيارها قرار مي گيرد سيم پيچي آرميچر مبتني بر اصول فني بوده و از طراحي ماشينهاي جريان مستقيم تبعيت مي كند.
- كلكتور: از تيغه هاي مسي سخت كه توسط ميكا نسبت به يكديگر و محور ماشين عايق شده اند تشكيل مي شود.
- محور: محور آرميچر ماشينهاي جريان مستقيم بايد از فولادي تهيه گردد كه خاصيت مغناطيسي آن كم اما استحكام مكانيكي كافي در مقابل تنشهاي برشي، كششي، و پيچشي را دارا باشد انتخاب كردن محور ضعيف خطر آفرين بوده و ممكن بوده در مواقع بروز خطا سبب انهدام كلي ماشين گردد.
- پروانه خنك كننده: پروانه خنك كننده سبب تهويه و ازدياد عمر مفيد ماشين ميشود شكل زير آرميچر ماشين DC با پروانه خنك كننده را نشان ميدهد.
3- جاروبك و جاروبك نگهدارها: وظيفه جاروبك نگهدار قرار دادن صحيح جاروبك روي تيغه هاي كلكتور است جاروبكها قطعاتي از جنس زغال يا گرافيت مي باشند كه براي گرفتن جريان از كلكتور يا دادن جريان به آن استفاده مي شود.
سيم پيچي آرميچر ماشينهاي جريان مستقيم
همانطور كه قبلا اشاره شد سيم پيچي آرميچر مبتني بر اصول فني خاص مي باشد كه در طراحي آن به نكات مهمي از قبيل استحكام مكانيكي، الكتريكي و حرارتي با عمر مفيد و عادي حدود 20 سال حداكثر گشتاور و جريان و ولتاژ با حداقل نوسانة جرقه كم بين زغال و كلكتور و صرفه جويي در مواد اوليه بايد توجه كرد.
بسته به نياز كلافها مي توانند بطور سري يا موازي يا تركيبي از اين دو به همديگر وصل مي شوند.
در صورتيكه كلافها با هم سري شوند نيرومحركه كلافها با هم جمع مي شوند و ولتاژ دهي آرميچر افزايش مي يابد. (سيم پيچي موجي)
در صورتيكه كلافها موازي شوند تعداد مسيرهاي جريان موجود در آرميچر افزايش يافته و قابليت ولتاژ دهي آرميچر افزايش مي يابد. (سيم پيچي حلقوي)
توضيح كامل روشهاي سيم پيچي آرميچر در كتابهاي سيم پيچي DC مطرح شده است و ما در اين جزوه به مصرفي آن كفايت مي كنيم.
الف- سيم پيچي حلقوب شامل حلقوي ساده و حلقوي مركب
ب- سيم پيچي موجي شامل موجي ساده و موجي مركب
ج- سيم پيچي پاي قورباغه اي
لازم است در اينجا تعداد مسيرهاي جريان كه در هر نوع ايجاد مي شود نيز معرفي شود. تعداد مسيرهاي جريان را با 2a نشان ميدهند كه بشرح زير است:
                                                                     2a = 2P          حلقوي ساده
                                                                     2a = 2P.m      حلقوي مركب
                                                                     2a = 2            موجي ساده
                                                                     2a = 2m         موجي مركب
2P : تعداد قطبهاي آرميچر ، m : درجه مركب بودن آرميچر
عكس العمل مغناطيسي آرميچر:
چنانچه ماشينهاي جريان مستقيم زير بار قرار گيرند يعني از سيم پيچي آرميچر جريان عبور كند يك ميدان عكس العمل (عرضي) توسط آرميچر ايجاد مي گردد. اين ميدان باعث مي شود منطقه خنثي در مولدها در جهت چرخش و در موتورها در خلاف جهت چرخش تغيير مكان دهد. عكس العمل آرميچر علاوه بر انحراف محور خنثي سبب تضعيف ميدان مغناطيسي اصلي مي شود در نتيجه نيرو محركه القاء شده در سيم پيچ كم شده، تلفات انرژي در ماشين و جرقه در زير جاروبكها بوجود مي آيد براي از بين بردن و يا كم كردن اثر عكس العمل در ماشينهاي جريان مستقيم مي توان از قطبهاي كمكي و يا در ماشينهاي بزرگتر از سيم پيچي جبرانگر هم استفاده كرد.
پديده كموتاسيون:
تغيير تماس جاروبك از يك تيغه كموتاتور به تيغه ديگر كموتاسيون نام دارد  در اين جابجايي كلافي كه تحت كموتاسيون قرار مي گيرد چون توسط جاروبك اتصال شده  بايد در صفحه خنثي قرار گيرددر عين حال چون جريان در اين كلاف در زمان كموتاسيون تغيير مقدار و جهت ميدهد سبب بوجود آمدن ولتاژ خود القايي در اين كلاف شده و از آنجا كه اين كلاف توسط جاربك و تيغه هاي كموتاتور اتصال كوتاه شده است جرقه نسبتاٌ شديد بين زغالها و كموتاتور بوجود مي آيد. قطبهاي كمكي براي رفع اين عيب موثر خواهد بود. اما در ماشينهاي كه قطب كمكي ندارند بهبود عمل كموتاسيون با تغيير محل جاروبكها (در جهت گردش در مولدها و در خلاف جهت گردش در موتورها) انجام گيرد. اين جابجايي درست كاملا امكان پذير و قابل مشاهده مي باشد.
رابطه نيرومحركه القاي در ماشينهاي DC واقعي
ولتاژ القاء شده در هر ماشين به سه عامل بستگي دارد:
1- فوران مغناطيسي (Ф)
2- سرعت زاويه اي رتور ماشين (ω)
3- ضريب ثابت كه به ساختمان ماشين بستگي دارد (K)
اين ولتاژ از رابطه رو به رو بدست مي آيد.                                             
مقدار K و ω را ميتوان از رابطه هاي زير بدست آورد
P : تعداد جفت قطبهاي ماشين
a : تعداد جفت مسيرهاي جريان                                                                                                                                              
Z : تعداد هادي هاي آرميچر
n : سرعت آرميچر برحسب دور بر دقيقه 

رابطه گشتاور توليد شده در آرميچر ماشينهاي جريان مستقيم واقعي
گشتاور توليد شده در ماشينهاي جريان مستقيم نيز به سه عامل بستگي دارد
1- فوران مغناطيسي (Ф)
2- جريان آرميچر (IA)
3- يك ضريب ثابت (K)
اين گشتاور از رابطه رو به رو بدست مي آيد.
توان و راندمان در ماشينهاي DC
در صورتيكه توان ورودي يك ماشين P1 و توان خروجي آن را P2 بناميم تفاوت اين دو تلفات ماشين نام دارد.                                                                                              
ضريب بهره (راندمان): نسبت توان خروجي به توان ورودي ماشين را ضريب بهره مي گويند.
                                                                                                      
تلفات در ماشينهاي DC: تلفات در ماشينهاي جريان مستقيم بصورت زير تقسيم بندي مي شوند.
1- تلفات مكانيكي يا اصطكاكي (Pmec)
2- تلفات آهني يا تلفات هسته (PFe)
3- تلفات مسي (Pcu)
- تلفات مكانيكي بعلت اصطكاك محور ماشين در ياتاقانها و اصطكاك جاروبكها با كلكتور و مقاومت هوا بوجود مي آيد.
- تلفات هسته از تلفات هيسترزيس و تلفات ناشي از جريانهاي گردابي در هسته آرميچر تشكيل مي شود.
- تلفات مسي يا ژولي در اثر عبور جريان از سيم پيچ هاي تحريك و آرميچر بوجود مي آيد.

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:34  توسط 66  | 

 

همانطوری که می دانید ، راه اندازی موتورهای القایی در صنعت از اهمیت ویژه ای برخوردار است. به خصوص این که امروزه استفاده از راه اندازهای الکترونیکی مانند راه اندازهای نرم - کنترلر های سرعت بسیار مرسوم شده است و لازم است علاقه مندان و کارشناسان این رشته روشهای کنترل و راه اندازی موتورها را به شیوه های کلاسیک به دیده فراموشی بسپارند و به فراگیری روشهای بروز بپردازند.

یکی از روشهای راه اندازی موتورهای القایی راه اندازهای نرم می باشد که از طریق آنها موتور ها از طریق کنترل ولتاژ-فرکانس در یک زمان مشخص بتدریج از سرعت صفر به سرعت نامی می رسند که این روش امروزه کاملا جا افتاده است.

راه اندازهای نرم تنها در هنگام راه اندازی بکار می روند و معمولا پس از راه اندازی توسط یک کنتاکتور بای پس از مدار خارج می گردند. این راه اندازها می توانند به سیستم از کار اندازی نرم نیز مجهز باشند که کاربرد های ویژه ای دارد. ضمن این که عموما این نوع راه اندازها به ترمز الکترونیکی از طریق تزریق جریان مستقیم نیز مجهز می باشند.



سازندگان این نوع راه اندازها معمولا حفاظت های مورد نیاز برای موتور را نیز در راه اندازها تعبیه می کنند که از این طریق حجم راه انداز محدود می گردد. ضمن این که با استفاده از این گونه راه اندازها نیاز به در نظر گرفتن کنتاکتور اصلی نیست . حفاظت هایی که معمولا در راه اندازهای نرم پیش بینی می گردد بشرح زیر است :

- حفاظت در مقابل اضافه بار

- حفاظت در مقابل توالی معکوس فازها و دو فاز شدن

- حفاظت در مقابل افزایش حرارت سیم پیچ های موتور که از طریق سنسورهای حرارتی انجام می گردد.

- حفاظت در مقابل کاهش ولتاژ

و موارد ديگر که بسته به سازنده راه انداز می تواند تغییر کند.

نکته مهم اینجاست که هنگام بسته شدن کنتاکتور بای پس حفاظت های تعبیه شده در راه انداز همچنان فعال می باشد چون مسیر بای پس تنها تایرستورها را بای پس می کند.

جهت بستن کنتاکتور بای پس بعد از راه اندازی موتور عموما از یک کنتاکت راه انداز استفاده می گردد که بعد از رمپ راه اندازی به صورت خودکار فعال می گردد. لازم به ذکر است که برخی از راه اندازهای نرم دارای سیستم بای پس داخلی هستند که دیگر نیاز به در نظر گرفتن کنتاکتور بای پس نیست.

با توجه به این که تایرستورهای بکار رفته در راه اندازهای نرم حرارت تولید می کنند اینطور استنباط می گردد که در تابلوهای دارای راه اندازهای نرم لازم است از فن استفاده گردد. ولی با توجه به کار راه انداز تنها در مرحله استارت ، حرارت تولید شده تنها به مرحله راه اندازی محدود می گردد و بنابر این در راه اندازهای دارای سیستم بای پس تنها تعبیه شکاف های عبور هوا متناسب با درجه حفاظتی تابلو  توصیه می گردد. ضمن این که این گونه راه اندازها عموما مجهز به هیت سینک و فن هستند.

اکثر راه اندازهای نرم مجهز به پورت های اطلاعاتی مانند مودباس- پروفی باس و ....  جهت تبادل اطلاعات می باشند که از این طریق می توان از کلیه اطلاعات داخل راه انداز مطلع گردید به این طریق کنترل این راه انداز ها توسط سیستم هایی مانند DCS بسیار ساده می باشد

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:34  توسط 66  | 

شركت ABB اخيرا ژنراتوري با ولتاژ بالا ابداع كرده است . اين ژنراتور بدون نياز به ترانسفورماتور افزاينده بطور مستقيم به شبكه قدرت متصل مي گردد . ايده جديد بكار گرفته شده در اين طرح استفاده از كابل به عنوان سيم پيچ استاتور مي باشد . ژنراتور ولتاژ بالا براي هر كاربرد در نيروگاههاي حرارتي و آبي مناسب مي باشد . راندمان بالا ، كاهش هزينه هاي تعمير و نگهداري ، تلفات كمتر ، تأثيرات منفي كمتر بر محيط زيست ( با توجه به مواد بكار رفته ) از مزاياي اين نوع ژنراتور مي باشد . ژنراتور ولتاژ بالا در مقايسه با ژنراتورهاي معمولي در ولتاژ بالا و جريان پائين كار مي كند . ماكزيمم ولتاژ خروجي اين ژنراتور با تكنولوژي كابل محدود مي گردد كه در حال حاضر با توجه به تكنولوژي بالاي ساخت كابلها ميتوان ولتاژ آنرا تا سطح 400 كيلو ولت طراحي نمود . هادي استفاده شده در ژنراتور ولتاژ بالا بصورت دوار مي باشد در حاليكه در ژنراتورهاي معمولي اين هادي بصورت مثلثي مي باشد در نتيجه ميدان الكتريكي در ژنراتورهاي ولتاژ بالا يكنواخت تر مي باشد . ابعاد سيم پيچ بر اساس ولتاژ سيستم و ماكزيمم قدرت ژنراتور تعيين مي گردد . در ژنراتورهاي ولتاژ بالا لايه خارجي كابل در تمام طول كابل زمين مي گردد ، اين امر موجب مي شود كه ميدان الكتريكي در طول كابل محدود گردد و ديگر مانند ژنراتورهاي معمولي نياز به كنترل ميدان در ناحيه انتهايي سيم پيچ نباشد .

جزيي ( Partialdischarge) در هيچ ناحيه اي از سيم پيچ وجود ندارد و همچنين ايمني افراد بهره بردار و يا تعميركار افزايش مي يابد . سربنديها و اتصالات معمولا در فضاي خالي مورد دسترس در محل انجام مي گيرد ، بنابراين محل اين اتصالات در يك نيروگاه نسبت به نيروگاه ديگر متفاوت مي باشد ، اما در هر حال اين اتصالات در خارج از هسته استاتور مي باشد ، براي مثال اتصالات و سربنديها ممكن است زير ژنراتور و يا خارج از قاب استاتور ( Statorframe ) انجام گيرد . بدين ترتيب اتصالات و سربنديها ، مشكلات ناشي از ارتعاشات و لرزش هاي بوجود آمده در ماشين هاي معمولي را نخواهند داشت .

 در طرح كنوني ژنراتور ولتاژ بالا دو نوع سيستم خنك كنندگي وجود دارد ، روتور و سيم پيچ هاي انتهايي توسط هوا خنك مي گردند در حاليكه استاتور توسط آب خنك مي گردد . سيستم خنك كنندگي آب شامل لوله هاي XLPE قرار گرفته شده در هسته استاتور مي باشد كه آب از اين لوله ها جريان مي يابد و هسته استاتور را خنك نگه مي دارد .

مقايسه جريان اتصال كوتاه در نيروگاه مجهز به ژنراتور ولتاژ بالا با نيروگاه مجهز به ژنراتور معمولي نشان مي دهد كه به دليل اينكه در نيروگاه با ژنراتور ولتاژ بالا راكتانس ترانسفورماتور حذف مي گردد جريانهاي خطا كوچكتر مي باشد .

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:33  توسط 66  | 

: استاتور موتورهاي سنكرون از نظر ساختمان دقيقاً مشابه استاتور موتورهاي القايي است سيم پيچهاي سه فاز آن در داخل شيارهاي هسته آهني استاتور تعبيه شده كه وظيفه آنها ايجاد ميدان دوار در هسته استاتور است.
روتور اين موتور به صورت يكپارچه يا از ورقهاي مغناطيسي ساخته مي شود و بر روي آن يك سيم پيچي جريان مستقيم به نام سيم پيچ تحريك نصب مي شود.
جريان تغذيه سيم پيچي تحريك روتور، از طريق دو حلقه كه بر روي محور روتور نصب شده به وسيله جاروبكها تأمين مي شود و روتور اين موتورها عملا بصورت يك مغناطيس الكتريكي (چرخ قطب) رفتار مي كند كه تعداد قطبهاي روتور به اندازه قطبهاي سيم پيچي استاتور خواهد بود.
طرز كار: هنگام وصل استاتور به شبكه سه فاز ، يك ميدان دوار كه سرعت آن متناسب با فركانس شبكه و تعداد قطبهاي استاتور است در آن بوجود مي آيد و سطح روتور را جاروب مي كند.قطبهاي روتور از طريق قطبهاي غير همنام استاتور جذب و لحظه اي بعد مجدداً اين قطبها به وسيله قطبهاي همنام استاتور دفع خواهند شد. پس ميانگين گشتاور صفر و روتور حركت نمي كند قطبهاي روتور به دليل سنگيني و اينرسي موجود در آن نمي توانند به سرعت همراه ميدان دوار استاتور بچرخند. پس بايد با يك وسيله كمكي (راه انداز) ابتدا سرعت روتور را به نزديكي سرعت ميدان دوار استاتور رساند تا روتور بتواند همراه ميدان دوار چرخش كند.


سؤال: گشتاور راه اندازي اين موتورها چقدر است؟
روشهاي راه اندازي موتورهاي سنكرون:
براي راه اندازي موتورهاي سنكرون سه روش اساسي مي توان به كار برد.
1-كاهش سرعت ميدان مغناطيسي استاتور: تا حدي كه روتور بتواند طي نيم سيكل چرخش ميدان مغناطيسي شتاب بگيرد و با آن قفل شود . اين كار را مي توان با كاهش فركانس منبع تغذيه انجام داد.
2- استفاده از يك گرداننده اوليه: كه سرعت موتور را تا حد سرعت سنكرون بالا ميبرد و با طي مراحل موازي كردن ماشين مثل ژنراتور روي خط آورده شود. پس از اين مراحل خاموش كردن با جدا كردن گرداننده اوليه ماشين سنكرون را تبديل به موتور خواهد كرد.
3- استفاده از سيم پيچ هاي ميرا كننده كه در انتهاي قطبين روتور نصب مي شود.
در موتورهاي سنكرون سرعت حركت روتور در هر حال برابر با سرعت ميدان دوار استاتور خواهد بود و افزايش بار فقط عقب ماندگي روتور نسبت به ميدان را موجب مي شود.
 
اختلاف فاز اين دو ميدان Bs وBR همان زاويه گشتاور است كه از0 تا90 تغيير مي كند. البته اگر افزايش بار بيش حد باشد.   موتور از حالت سنكرونيزم خارج خواهد شد كه اصطلاحا آن را ناپايدار مي ناميم ضمنا هنگام كار با سرعت سنكرون با تغييرات جريان تحريك امتداد جريان آرميچر و ضريب قدرت ماشين از حالت پس فازي به اهمي و پيش فازي قابل كنترل خواهد بود كه از اين خاصيت جهت اصلاح ضريب قدرت شبكه استفاده مي شود كه به موتورهاي سنكرون پر تحرك (كاردر حالت پيش فازي) خازنهاي سنكرون نيز گفته مي شود . (موتورهاي سنكرون در حالت كار پيش فازي كم تحريك هستند.) مدار معادل تكفاز موتور سنكرون بصورت زير مي باشد.

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:32  توسط 66  | 

وسايل تبديل انرژي الكترومكانيكي گردان را ماشينهاي الكتريكي مي گويند.
طبقه بندي ماشينهاي الكتريكي
ماشينهاي الكتريكي به دو طريق دسته بندي مي شوند:
از نظر نوع جريان الكتريكي
الف- ماشينهاي الكتريكي جريان مستقيم
ب- ماشينهاي الكتريكي جريان متناوب
از نظر نوع تبديل انرژي
الف- مولدهاي الكتريكي كه انرژي مكانيكي را به انرژي الكتريكي تبديل مي كنند
ب- موتورهاي الكتريكي كه انرژي الكتريكي را به انرژي مكانيكي تبديل مي كنند
به طور كلي ماشينهاي الكتريكي جزء وسايل تبديل انرژي غير خطي هستند يعني هر تغيير در ورودي هميشه به يك نسبت در خروجي ظاهر نمي شود.


مولد ساده جريان مستقيم
يك مولد ساده جريان مستقيم از چهار قسمت اصلي زير تشكيل شده است
1- قطبهاي مغناطيسي: كه وظيفه ايجاد ميدان مغناطيسي مولد را بعهده دارد و مي تواند بصورت آهنرباي دائم و يا آهنرباي الكتريكي باشد
2- هاديها: براي ايجاد ولتاژ القايي به كار گرفته ميشود
3- كموتاتور: در ساده ترين حالت از دو نيم استوانه مسي كه توسط ميكا نسبت به يكديگر عايق شده اند تشكيل مي گردد، وظيفه يك طرفه كردن ولتاژ و جريان القايي را در خارج از مولد بعهده دارد.
4- جاروبك: جهت انتقال جريان الكتريكي از هاديها به مصرف كننده استفاده ميشود شكل زير مولد ساده جريان مستقيم را نشان ميدهد.

طرز كار مولد ساده جريان مستقيم: با حركت هاديها در فضاي ما بين قطبها باعث ميشود ميدان مغناطيسي توسط هاديها قطع ميشود بدين ترتيب مطابق پديده القاء در هاديها ولتاژ القاء ميشود.ابتدا و انتهاي هر كلاف به يك نيم استوانه مسي يا يك تيغه كوموتاتور وصل ميشود روي تيغه هاي كوموتاتور دو عدد جاروبك بطور ثابت قرار داشته و با حركت هاديها تيغه هاي كموتاتور زير جاروبك مي لغزند، بدين ترتيب در ژنراتورهاي جريان مستقيم از طريق كوموتاتور ولتاژ القاء شده طوري به جاروبكها منتقل مي شود كه هميشه يكي از جاروبكها داراي پلاريته مثبت و ديگري داراي پلاريته منفي است. شكل موج ولتاژ القاء شده در اين مولد ساده بصورت زير مي باشد.

براي افزايش سطح ولتاژ القاء شده و بهبود يكسوسازي بمنظور داشتن ولتاژ با دامنه ثابت بايد تعداد كلافها را افزايش داد و كلافها را به كمك تيغه هاي كوموتاتور سري كنيم.
چگونگي تغيير پلاريته ولتاژ القايي در مولد ساده
در مولد جريان مستقيم تغيير پلاريته ولتاژ خروجي عملاٌ در صورت ايجاد يكي از دو حالت زير ممكن مي شود:
1- جهت چرخش آرميچر عوض شود
2- جهت جريان در سيم پيچ قطبها تغيير كند در صورتيكه قطبها از نوع مغناطيس دائم نباشد
چگونگي تغيير دامنه ولتاژ القايي در مولد ساده
براي افزايش دامنه ولتاژ القا شده دو روش ممكن است:
1- افزايش سرعت چرخش آرميچر كه باعث افزايش ولتاژ بصورت خطي مي شود

2- افزايش جريان تحريك كه باعث افزايش ولتاژ مولد بصورت غير خطي مي شود

موتور ساده جريان مستقيم
موتور ساده از نظر ساختماني مانند مولد ساده جريان مستقيم مي باشد فقط نحوه كار آن با مولد ساده جريان مستقيم تفاوت دارد. در موتور ساده هاديها از طريق كوموتاتور و جاروبكها به يك منبع جريان مستقيم متصل مي شود در اينصورت جرياني از هاديها عبور كرده و در نتيجه مطابق نيروي لورنس به هاديها نيروي وارد ميشود و آنها به حركت در مي آيد.

نحوه ايجاد نيرو و گشتاور در موتور ساده: در صورتيكه از يك كلاف تك حلقه كه بين قطبهاي يك مغناطيس قرار دارد جريان الكتريكي عبور كند مطابق شكل به بازوي سمت راست نيروي به سمت بالا و به بازوي سمت چپ نيروي بسمت پايين وارد مي شود با وارد شدن دو نيروي مختلف الجهت به دو طرف كلاف طبيعي است كه كلاف حول محورش شروع به دوران خواهد نمود يعني وارد آمدن زوج نيرو موجب ايجاد گشتاور لازم شده است.

در اين موتور ساده اگر صفحه كلاف عمود بر خطوط ميدان مغناطيسي قرار گيرد به آن گشتاوري وارد نميشود در ضمن كه گشتاور وارد شده نيز دامنه يكنواخت ندارد براي رفع شدن اين معايب مي بايست تعداد كلافها و تيغه هاي كوموتاتور را افزايش داد كلافها در زاويه هاي مختلف قرار مي گيرد و با هم توسط تيغه هاي كوموتاتور سري مي شود.

تغيير جهت گردش در موتور ساده DC: تغيير جهت گردش موتور ساده به دو روش زير ممكن است:
1- تغيير جهت جريان در كلاف كه با تغيير پلاريته ولتاژ منبع از خارج موتور ميسر است
2- تغيير قطبهاي مغناطيسي كه با تغيير جهت جريان در سيم پيچي تحريك ممكن است
ساختمان ماشينهاي جريان مستقيم
اجزاء تشكيل دهنده ماشينهاي جريان مستقيم را ميتوان به صورت زير دسته بندي كرد:
1- قسمت ساكن شامل قطبها و بدنه
2- قسمت گردان (آرميچر)
3- مجموعه جاروبك و جاروبك نگهدارها
هر كدام از قسمتهاي فوق بطور خلاصه توضيح داده مي شود
1- اجزاء ساكن ماشينهاي جريان مستقيم: قسمتهاي ساكن جريان مستقيم شامل اجزاء زير هستند:
الف- قطبهاي اصلي
ب- قطبهاي كمكي
ج- بدنه
- قطبهاي اصلي: وظيفه اين قسمت تامين ميدان مغناطيسي مورد نياز ماشين است. قطبهاي اصلي خود شامل قسمتهاي زير مي باشد:
- هسته قطب: از ورقهاي فولاد الكتريكي به ضخامت حدود 5/0 تا 65/0 ميلي متر با خاصيت مغناطيسي قابل قبول تشكيل مي شود.
- كفشك قطب: شكل قطب به نحوي است كه سطح مقطع كوچكتر براي سيم پيچ اختصاص داده مي شود و قسمت بزرگتر كه كفشك قطبي نام دارد سبب شكل دادن ميدان مغناطيسي و سهولت هدايت فوران مغناطيسي به فاصله هوايي مي شود.
- سيم پيچ تحريك: يا سيم پيچ قطب اصلي كه دور هسته قطب پيچيده مي شود، براي جريانهاي كم بايد تعداد دور سيم پيچ تحريك زياد باشد و سطح مقطع آن كم و برا ي جريانهاي زياد تعداد دور كم براي سيم پيچ لازم است و با سطح مقطع زياد

- قطبهاي كمكي: قطبهاي كمكي در ماشينهاي جريان مستقيم از هسته و سيم پيچ تشكيل مي شوند، هسته قطبهاي كمكي را معمولاٌ از فولاد يكپارچه مي سازند. سيم پيچي قطبهاي كمكي نيز با تعداد دور كم و سطح مقطع زياد پيچيده مي شوند.
- بدنه: قطبهاي اصلي، كمكي، جاروبك نگهدارها روي بدنه ماشين محكم مي شوند و بوسيله ماشين روي پايه اش نصب مي گردد. قسمتي از بدنه را هسته آهني تشكيل مي دهد كه براي هدايت فوران مغناطيسي قطبهاي اصلي و كمكي بكار مي رود اين قسمت طوق بكار مي رود. شكلهاي زير قطب اصلي و كمكي ماشين جريان مستقيم را نشان ميدهد.

2- قسمت گردان يا آرميچر: در ماشينهاي جريان مستقيم قسمت گردنده را القاء شوند يا آرميچر مي نامند كه از اجزاء زير تشكيل شده است:
الف- هسته آرميچر
ب- سيم پيچي آرميچر
ج- كلكتور يا يكسوكننده مكانيكي
د- محور
ﻫ- پروانه خنك كننده
- سيم پيچي آرميچر: از كلافهاي مشابهي تشكيل مي شود كه با الگوي مناسب تهيه و در شيارها قرار مي گيرد سيم پيچي آرميچر مبتني بر اصول فني بوده و از طراحي ماشينهاي جريان مستقيم تبعيت مي كند.
- كلكتور: از تيغه هاي مسي سخت كه توسط ميكا نسبت به يكديگر و محور ماشين عايق شده اند تشكيل مي شود.
- محور: محور آرميچر ماشينهاي جريان مستقيم بايد از فولادي تهيه گردد كه خاصيت مغناطيسي آن كم اما استحكام مكانيكي كافي در مقابل تنشهاي برشي، كششي، و پيچشي را دارا باشد انتخاب كردن محور ضعيف خطر آفرين بوده و ممكن بوده در مواقع بروز خطا سبب انهدام كلي ماشين گردد.
- پروانه خنك كننده: پروانه خنك كننده سبب تهويه و ازدياد عمر مفيد ماشين ميشود شكل زير آرميچر ماشين DC با پروانه خنك كننده را نشان ميدهد.

3- جاروبك و جاروبك نگهدارها: وظيفه جاروبك نگهدار قرار دادن صحيح جاروبك روي تيغه هاي كلكتور است جاروبكها قطعاتي از جنس زغال يا گرافيت مي باشند كه براي گرفتن جريان از كلكتور يا دادن جريان به آن استفاده مي شود.
سيم پيچي آرميچر ماشينهاي جريان مستقيم
همانطور كه قبلا اشاره شد سيم پيچي آرميچر مبتني بر اصول فني خاص مي باشد كه در طراحي آن به نكات مهمي از قبيل استحكام مكانيكي، الكتريكي و حرارتي با عمر مفيد و عادي حدود 20 سال حداكثر گشتاور و جريان و ولتاژ با حداقل نوسانة جرقه كم بين زغال و كلكتور و صرفه جويي در مواد اوليه بايد توجه كرد.
بسته به نياز كلافها مي توانند بطور سري يا موازي يا تركيبي از اين دو به همديگر وصل مي شوند.
در صورتيكه كلافها با هم سري شوند نيرومحركه كلافها با هم جمع مي شوند و ولتاژ دهي آرميچر افزايش مي يابد. (سيم پيچي موجي)
در صورتيكه كلافها موازي شوند تعداد مسيرهاي جريان موجود در آرميچر افزايش يافته و قابليت ولتاژ دهي آرميچر افزايش مي يابد. (سيم پيچي حلقوي)
توضيح كامل روشهاي سيم پيچي آرميچر در كتابهاي سيم پيچي DC مطرح شده است و ما در اين جزوه به مصرفي آن كفايت مي كنيم.
الف- سيم پيچي حلقوب شامل حلقوي ساده و حلقوي مركب
ب- سيم پيچي موجي شامل موجي ساده و موجي مركب
ج- سيم پيچي پاي قورباغه اي
لازم است در اينجا تعداد مسيرهاي جريان كه در هر نوع ايجاد مي شود نيز معرفي شود. تعداد مسيرهاي جريان را با 2a نشان ميدهند كه بشرح زير است:
                                                                     2a = 2P          حلقوي ساده
                                                                     2a = 2P.m      حلقوي مركب
                                                                     2a = 2            موجي ساده
                                                                     2a = 2m         موجي مركب
2P : تعداد قطبهاي آرميچر ، m : درجه مركب بودن آرميچر
عكس العمل مغناطيسي آرميچر:
چنانچه ماشينهاي جريان مستقيم زير بار قرار گيرند يعني از سيم پيچي آرميچر جريان عبور كند يك ميدان عكس العمل (عرضي) توسط آرميچر ايجاد مي گردد. اين ميدان باعث مي شود منطقه خنثي در مولدها در جهت چرخش و در موتورها در خلاف جهت چرخش تغيير مكان دهد. عكس العمل آرميچر علاوه بر انحراف محور خنثي سبب تضعيف ميدان مغناطيسي اصلي مي شود در نتيجه نيرو محركه القاء شده در سيم پيچ كم شده، تلفات انرژي در ماشين و جرقه در زير جاروبكها بوجود مي آيد براي از بين بردن و يا كم كردن اثر عكس العمل در ماشينهاي جريان مستقيم مي توان از قطبهاي كمكي و يا در ماشينهاي بزرگتر از سيم پيچي جبرانگر هم استفاده كرد.

پديده كموتاسيون:
تغيير تماس جاروبك از يك تيغه كموتاتور به تيغه ديگر كموتاسيون نام دارد  در اين جابجايي كلافي كه تحت كموتاسيون قرار مي گيرد چون توسط جاروبك اتصال شده  بايد در صفحه خنثي قرار گيرددر عين حال چون جريان در اين كلاف در زمان كموتاسيون تغيير مقدار و جهت ميدهد سبب بوجود آمدن ولتاژ خود القايي در اين كلاف شده و از آنجا كه اين كلاف توسط جاربك و تيغه هاي كموتاتور اتصال كوتاه شده است جرقه نسبتاٌ شديد بين زغالها و كموتاتور بوجود مي آيد. قطبهاي كمكي براي رفع اين عيب موثر خواهد بود. اما در ماشينهاي كه قطب كمكي ندارند بهبود عمل كموتاسيون با تغيير محل جاروبكها (در جهت گردش در مولدها و در خلاف جهت گردش در موتورها) انجام گيرد. اين جابجايي درست كاملا امكان پذير و قابل مشاهده مي باشد.

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:32  توسط 66  | 

 

مقدمه: ژنراتورها و موتورهاي الكتريكي  گروه از وسايل استفاده شده جهت تبديل انرژي مكانيكي به انرژي الكتريكي يا برعكس . توسط وسايل الكترومغناطيس هستند . يك ماشيني كه انرژي الكتريكي به مكانيكي تبديل مي كند موتورنام دارد.و ماشيني كه انرژي مكانيكي را به انرژي الكتريكي تبديل مي كند ژنراتور يا آلترناتور يامتناوب كننده يا دينام ناميده مي شود . 

دو اصل فيزيكي مرتبط با عملكردموتورهاوژنراتور ها وجود دارد. اولين اصل فيزيكي اصل القايي الكترومغناطيسي كشف شده توسط مايكل فارادي دانشمند بريتانيايي است. اگر يك هادي در ميان يك ميدان مغناطيسي حركت كند يا اگر طول يك حلقه ي القايي ساكني جهت تغيير استفاده شود. يك جريان ايجاد مي شود يا القا مي شود در كنتاكنتور بحث اين اصل اين است كه در مورد واكنش الكترومغناطيسي بحث مي كند و اين كه اين واكنش در ابتدا توسط آندر مري آمپر در سال 1820 كه دانشمند فرانسوي است كشف شد.اگر  يك جريان از ميان يك كنتاكتور كه در ميدان مغناطيسي قرار گرفتند عبور كند . ميدان نيروي مكانيكي  بر آن وارد مي كند .



ساده ترين ماشيني هاي ديناموالكتريك ديسك ديناميكي است كه توسعه يافته توسط افرادي است كه آن شامل يك صفحه ي مسي پيچيده شده است. كه اين پيچش از مركز تالبه وجود دارد .و بين قطبهاي يك آهنرباي سمبر اسبي است .

وقتي ديسك مي چرخد يك جريان بين مركز ديسك ولبه ي آن توسط عملكرد ميدان آهنربا القا مي شود كه ديسك يا صفحه ميتواند ساخته شود. جهت عمل كردن به عنوان يك موتور توسط بكار بردن يك ولتاژ بين لبه ي ديسك و مركزش كه اين به علت چرخش ديسك به دنده بدليل نيروي توليد  شده توسط واكنش مغناطيس است . ميدان مغناطيسي آهن رباي دائم به اندازه ي كافي براي كار كردن كافي است . كه حتي به عنوان يك موتور يا دينام كوچك بكار مي رود ( كار مي كند). در نتيجه براي ماشين هاي بزرگتر آهنرباي بزرگتري بكار مي رود. هم موتور ها وهم ژنراتورها داراي دو اصل هستند : قسمتها وميدان كه آهنرباي الكترومغناطيسي با سيم پيچ هايش و آرميچر و ساختاري كه از كنتاكتور حمايت مي كند و كار قطع ميدان مغناطيسي وحمل جريان القا شده  ژنراتور يا جريان ناگهاني به موتور را دارد است. آرميچر معموﻸ هسته ي نرم آهني اطراف سيم هاي القايي كه دور سيم پيچ ها پيچيده شده اند است.

موتور هاي AC:

دو نوع اساسي موتور ها طراحي شده اند براي عمل كردن بر روي جريان متناوب پولي فاز موتور هاي سنكرون و موتور هاي القايي موتور هاي سنكرون اساسآ يك تناوب گر(آلترناتور) سه فاز است كه بصورت معكوس كار مي كند. آهنربا هاي ميدان روي رتور پيچيده شده اند توسط جريان مستقيم تحريك شده اند و سيم پيچ آرميچر به سه قسمت تقسيم مي شود و با جريان متناوب سه فاز تغذيه مي شوند . تغيير موج هاي سه فاز جرياندر آرميچر واكنش متغيير مغناطيس را با قطبهاي آهنربا هاي ميدان سبب مي شوند. و چرخش ميدان با يك سرعت ثابت كه اي سرعت ثابت توسط فركانس جريان در خط قدرت AC تعيين مي شود را سبب مي گردند سرعت موتور سنكرون در وسايل خاصي سودمند است. همچنين در كاربدهايي كه بار مكانيكي روي موتور خيلي زياد مي شود و نيز موتور هاي سنكرون نمي توانند استفاده شوند. بخاطر اينكه اگر موتور سرعتش كاسته شود تحت بار آن يك مرحله عقب مي ماند . در واقع يك پله كاسته مي شود با فركانس جريان و منجر به توقف موتور مي شود موتور هاي سنكرون مي توانند ساخته شوند براي عملكرد از يك منبع قدرت تك فاز توسط با شاكل شدن عناصر مدار مناسب كه يك ميدان مغناطيسي چرخش را سبب مي شود ساده ترين موتور هاي الكتريكي نوع قفس سنجابي موتور هاي القايي استفاده شده بايد يك تغذيه سه فاز مي باشد استاتور يا ارميچر ساكن از موتور قفس سنجابي شامل سه سيم پيچ ثابت مشابه با آرميچر موتور سنكرون مي باشد عصر چرخشي متشكل از يك هسته: در قسمتي كه يك سري از كنتاكتور ها سنگين نظم داده ومنظم شده اند وقرار گرفته اند بصورت يك دايره در اطراف شافت (ميله) و موازي با آن برداشتني هستند كنتاكتور هاي روتور به شكل قفسه اي استوانه اي و مشابه به ان استفاده مي شوند بصورت سنجابي (كار مي كنند) جريان سه فاز در سيم پيچ هاي استاتور جاري مي شوند و يك ميدان مغناطيسي چرخشي توليد مي كند. اين ميدان يك جريان در كنتاكتور هاي نوع قفسه اي القا مي كند . واكنش مغناطيسي بين ميدان چرخشي و كنتاكتور هاي حامل جريان روتور روتور را به حركت در مي اورند. اگر روتور دقيقآ با سرعت يكساني به مانند ميدان مغناطيسي بچرخد هيچ جرياني در آن القا نخواهد شد. و از اين رو روتور با سرعت سنكرون نبايد به حركت درايد. در عمل سرعتهاي چرخش روتور و ميدان در حدود 2 تا 5 درصد با هم تفاوت دارند. اين تفا وت سرعت بعنوان لغزش معروف است. متور ها با روتور هاي قفس سنجابي مي توانند استفاده شوند روي جريان متناوب تكفاز بوسيله نظم هاي مختلفي از القا و ظرفيت و بر اساس اين دو مورد كه     ولتاژ تكفاز را اصلاح مي كند و تغيير مي دهد و آن را به ولتاژ فاز تبديل مي كند چنين موتور هايي بعنوان موتور هاي فاز شكاف (Spelat Phase) مشخص و معروفند يا موتور هاي تعديل كننده يا كند از سر(متور هاي خازني) بر اساس نظم و ترتيب آن ها استفاده مي شوند.

موتور هاي قفس سنجابي تكفاز گشتاور شروع(راه اندازي) زيادي ندارند. و براي به كار انداختن در حالي كه گشتاور زياد است موتور هاي خنثي القايي استفاده مي شود . يك موتور خنثي القايي ممكن است از نوع فاز شكاف باشد. يا از نوع تعديل كننده اما يك سوئيچ يا اتو ماتيك يا دستي دارد كه اجازه مي دهد جريان بين جاروبك هاي كموتاتور وقتي موتور شروع به حركت مي كند. جاري شود و اتصالات كوتاه همه اجزاي كموتاتور بعد از اينكه موتور به يك سرعت تقسيم مي شوند . موتور هاي دفع القايي يا خنثي القايي به اي خاطر ناميده شده اند . كه گشتاور راه اندازيشان وابسته است به دفع بين روتور و استاتور و گشتاورشان در زمان راه اندازي وابسته است به القا موتورهاي سيم پيچي شده ي سري با كموتاتور ها كه بر روي جريان متناوب با جريان مستقيم عمل مي كنند. موتور هاي يونيورسال ناميده مي شوند. آن ها معمولآ فقط در اندازه هاي كوچك ساخته مي شوند و معمولآ در مصارف خانگي كاربرد دارند.

آلتر ناتور هاي جريان متناوب(AC)(آلتر ناتور ها) ژنراتوها:

همانتور كه در بالا گفته شد يك ژنراتور ساده بدون كموتاتور توليد خواهد كرد كه يك جريان الكتريكي كه متناوب مي شوند.در مسير همانطور كه آرميچر مي چرخد چنين جريان متناوبي مزيت زيادي دارد . براي اتقال توان الكتريكي و از اين رو بشترين ژنراتور هاي اللتريكي بزرگ از نوع AC هستند.در ساده ترين شكلش يك ژنراتور AC فقط در دو حالت خاص فرق مي كند با ژنراتور DC پايانه هاي سيم پيچ آرميچرش بيرون هستند. براي حلقه هاي لغزان جزئي شده جامد روي شافت(ميله)ژنراتو بجاي كموتاتور و سيم پيچ هاي ميذان توسط يك منبع DC خارجي تغذيه انرژي مي شوند. تا اينكه توسط خود ژنراتور اين كار انجام مي شود. ژنراتور هاي AC سرعت پاييني با تعداد زيادي در حدود 100 قطب ساخته مي شوند. هم براي بهبود بازده شان و هم براي دست يافتن به فركانس دلخواه به آساني. آلترناتور ها با توربين هاي سرعت بالا راه اندازي مي شوند. همچنين اغلب ماشين هاي دو قطبي هستند. فركانس جريان گرفته شده توسط ژنراتو AC مساوي است با نيمي از تعداد قطبها و تعداد چرخش آرميچر در هر ثانيه. اغلب مطلوب است در مورد ژنراتور كه واتژ بالايي وجود داشته باشد و آرميچر هاي در حال چرخش در چنين كاربرد هايي صرف عمل نمي كنند. بخاطر احتمال جرقه زني بين جاروبكها و حلقه هاي لغزان و خطر شكستهاي  مكانيكي كه ممكن است سبب اتصال كوتاه شود . آلترناتور ها بنا بر اين با يك سيم پيچ ساكن كه بدور يك روتور مي چرخد . و اين روتور شامل تعدادي اهنرباي مغناطيسي ميدان هستندساخته مي شوند اصل عملكرد آنها دقيقآ مشابه عملكرد ژنراتور هاي AC توصيف شده اند. بجز اينكه ميدان مغناطيسي(نسبت به كنتاكتور هاي آرميچر) به حركت در مي ايند. جريان توليد شده توسط آلترناتور هاي توصيف شده در بالا به يك پيك مي رسد و به صفر ختم مي شوند و به يك پيك منفي افت مي كنند. و دوباره به سمت صفر مي آيند. و در چند زمان در واقع چندين بار در هر ثانيه بسته به فركانس  كه ماشين طراحي شده چنين جريان را جريان متناوب تكفاز ناميده اند. همچنين اگر آرميچر در داخل دو سيم پيچ قرار گيرد. كه اين سيم پيچ ها از زاويه ها و گوشه هاي راست يكديگر كشيده شده اند و با اتصالات خارجي مجزا تهيه شده اند. دو موج جريان توليد خواهد شد. هر كدام در ماكزيممش خواهد بود وقتي كه ديگري به صفر برسد .چنين جرياني را جريان متناوب سه فاز ناميده اند. اگر سه سيم پيچ ارميچر با زواياي 120درجه با يكديگر قرار گيرند جريان به شكل موج سه برابر و كريپل توليد خواهد شد كه به آن جريان متناوب سه فاز گفته مي شود. يك تعداد زيادتري از فازها ممكن است با افرايش تعداد سيم پيچها بدست آمده باشند و گرفته شوند در ارميچر اما در مهندسي برق مدرن جريان متناوب سه فاز بسيا پر كاربرد است و آلترناتور سه فاز ماشيني دينامو الكتريكي است كه بطور كلي براي توليد قدرت الكتريكي (يا توان الكتريكي) بكار مي رود. ولتاژ خاي بالاي 13200 در آلترناتور ها رايج ترند.

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:31  توسط 66  | 

 

متن زیر روشهایی کاملآعملی است

آزمايش1: برچسب گذاري ترانس سه فاز

آزمايش2: برچسب گذاري موتورهاي سه فاز



آزمايش شماره ۱

موضوع آزمايش: برچسب گذاري ترانس سه فاز

هدف از انجام اين آزمايش اولاً تعيين سمت هاي اوليه و ثانويه ترانس مي باشد در ثاني براي اتصال هاي مختلف (ستاره و مثلث) سرهاي (W.V.U) (x.y.z) را مشخص مي كند.

براي انجام اين آزمايش 12 تا سر همرنگ هم اندازه انتخاب كرده 6 تا به سمت اوليه و 6 تا به سمت ثانويه وصل مي كنيم سپس توسط اهم متر هر دو كلاف را كه به هم راه مي دهد اهم آنرا گرفته و يادداشت مي كنيم در اين مرحله سر و ته كلاف ها مشخص مي شود. بعد از آن در صورتي كه ترانس كاهنده باشد اهم هاي بيشتر مربوط به سمت اوليه و اهم هاي كمتر مربوط به سمت ثانويه است.

براي مشخص كردن (z,x,y),(w,v,u) سمت اوليه از سر كلاف مشخص كردن (z,x,y)(w,v,u) سمت اوليه از سر كلاف مشخص شده يكي را به عنوان مبنا انتخاب كرده و از كلاف هاي بعدي يكي ديگر را انتخاب كرده و يك سر را به نول وصل كرده و سر ديگر را توسط آمپرمتر با فاز S وصل مي كنيم مقدار آمپر را يادداشت مي كنيم. دوباره فازها را برعكس حالتي درست است كه آمپرمتر آمپر كمتري نشان دهد. دوباره همين كار را براي فاز T انجام داده فاز T بدست آيد براي مشخص كردن سرهاي ثانويه با استفاده از روابط فازي كه ولتاژ خط برابر ولتاژ فاز مي باشد اين آز را به اين ترتيب انجام مي دهيم به اين ترتيب كه 2 تا از كلاف ها را به دلخواه انتخاب كرده و آنرا با هم سري كرده حال ولتاژ خط را اندازه مي گيريم. اگر ولتاژ خط  برابر ولتاژ فاز باشد اين اتصال درست است در غير اين صورت دو سر يكي از كلاف ها را عوض مي كنيم براي انتخاب فاز بعدي به همين ترتيب انتخاب مي كنيم براي اتصال مثلث به همين ترتيب در مرحله اول اگر ولتاژ خط برابر ولتاژ فاز باشد درست مي باشد براي سرها دوم تمام كلاف ها را با هم سر مي كرده اگر ولتمتر مقدار صفر نشان دهد اين اتصال درست است.

موضوع آزمايش:  برچسب گذاري موتورهاي سه فاز (روش علمي)

براي تعيين سرهاي يك موتور سه فاز ابتدا توسط اهم متر هر كلافي كه به هم راه مي دهد را پيدا كرده بعد به ترتيب زير عمل مي كنيم سر كلاف را به صورت ستاره وصل كرده به دو سر (يا به دو تا از فازها ) ولتاژ پايين حدود V50 متناوب وصل مي كنيم در اين حالت اگر ولتاژ دو سر C,B مساوي با صفر و ولتاژ دو سر AC تقريباً 50 * 5/1 باشد اتصالات درست است و مي توانيم نقاطي كه به هم وصل شده به ترتيب z,y,x و سرهاي آنها را w,v,u انتخاب بكنيم براي مثال اگر ولتاژ دو سر AC مساوي 25 ولت باشد بايد سر كلاف را با نقطه نول عوض كرد و به همين ترتيب اگر ولتاژ بين نقطه B.C صفر نباشد بايد ولتاژهاي B.N يا CN را عوض كرد.

ب) برچسب گذاري موتورهاي سه فاز (روش تجربي)

براي انجام اين آزمايش از روش تجربي كه همراه سعي و خطا است سه تا از سرها يا ته ها به هم وصل كرده و سرها و يا ته هاي ديگر را به برق وصل كرده اگر موتور بدون لرزش يا سر و صدا كار كند اين اتصال به فرض درست است وگرنه آنقدر جابه جايي سرها و يا ته ها را انجام مي دهيم تا موتور بدون لرزش و همچنين از هر سه فاز به يك ميزان آمپر عبور كند.

تذكر: براي چك كردن يك موتور سه فاز اولين تستي كه بايد انجام شود تست آمپر است يعني آمپر هر سه فاز را گرفته اگر آمپرها برابر باشند به معني اين است كه سيستم يا موتور درست كار مي كند و در غير اين صورت هم بايد برق ورودي سيستم را چك كرد و هم آزمايش هاي ديگر روي ماشين مثلاً اتصال بدنه اتصال فاز به فاز و…

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:31  توسط 66  | 

کاربرد مولدهاي جريان مستقيم
از مولدهاي جريان مستقيم بيشتر به عنوان منبع انرژي براي تحريك مولدهاي نيروگاهي و ماشينهاي خودكار، هواپيماها، جوشكاري با قوس الكتريكي، قطارهاي راه آهن، اتوبوسهاي برقي، زير درياييها و غيره استفاده مي نمايند بدين ترتيب كاربرد مولدهاي جريان مستقيم زياد و متنوع است و لذا مولدهاي جريان مستقيم با توان ها و دورهاي مختلف ساخته مي شوند.
طبقه بندي مولدهاي جريان مستقيم
ماشين هاي DC واقعي داراي دو دسته سيم پيچ هستند
1- سيم پيچ آرميچر
2- سيم پيچ تحريك (قطب ها)
كه با توجه به نحوه ارتباط الكتريكي سيم پيچ تحريك و سيم پيچ آرميچر به دو دسته كلي تقسيم بندي مي شوند.
1- مولدهاي تحريك مستقل
2- مولدهاي خود تحريك
- در مولدهاي تحريك مستقل بين سيم پيچ آرميچر و سيم پيچ تحريك هيچ ارتباط الكتريكي وجود ندارد
- در مولدهاي خود تحريك بين اين دو سيم پيچ ارتباط الكتريكي وجود دارد و انرژي سيم پيچ تحريك از انرژي توليدي خود مولد تامين مي شود نحوه اين ارتباط الكتريكي مولدهاي خود تحريك را به دو دسته تقسيم بندي مي كند.
- مولدهاي تحريك شنت يا موازي
- مولدهاي تحريك سري
- مولدهاي تحريك مختلط يا كمپوند
با توجه به اهميت مولدهاي DC به بررسي كامل اين مولدها و مشخصات آنها مي پردازيم

مولد تحريك مستقل
همانطور كه گفته شد در اين مولد بين سيم پيچ تحريك و آرميچر هيچ ارتباط الكتريكي وجود ندارد و مدار تحريك توسط يك منبع تغذيه جريان مستقيم خارجي تغذيه ميشود به اين منبع اكسايتر گفته ميشود. در مدار تحريك از يك مقاومت متغيير استفاده مي شود تا جريان تحريك را كنترل و فوران مغناطيسي قطبها را تغيير دهد. شكل زير مدار معادل الكتريكي يك مولد تحريك مستقل را نشان ميدهد.
در اين مولد جريان بار، ولتاژ ترمينال و جريان تحريك از روابط زير بدست مي آيد.
IL : جريان بار
IA : جريان آرميچر
VT : ولتاژ ترمينال                                                                                                               
EA : نيرومحركه القاء شده آرميچر
RA : مقاومت اهمي آرميچر
ε : افت ولتاژ ناشي از عكس العمل
VF : ولتاژ تحريك
RF : مجموع مقاومت سيم پيچ تحريك و رئوستاي تنظيم
IF : جريان تحريك

- مشخصه بي باري يا مشخصه مغناطيسي مولد تحريك مستقل
مشخصه بي باري يا مغناطيس مولد تغييرات نيرومحركه القاء شده آرميچر (EA) را به ازاء تغييرات جريان تحريك (IF) در شرايط  دور ثابت n = const و بدون بار IL = 0 نشان ميدهد اين مشخصه در شكل زير نشان داده شده است.

در بررسي بيشتر اين مشخصه به نكات زير توجه بيشتري داريم
1- مشخصه مغناطيسي به سه قسمت تقسيم بندي مي شود قسمت اول منحني تقريباٌ خط مستقيم است زيرا به ازاء جريان تحريك كم، تمام نيرومحركه مغناطيسي براي ايجاد فوران در فاصله هوايي كه قابليت نفوذ مغناطيسي آن ثابت است به مصرف مي رسد اما در قسمت دوم اشباع ماشين شروع شده و مشخصه به شكل منحني در مي آيد و در قسمت سوم كه هسته به اشباع مي رود مشخصه با محور افقي تقريباٌ موازي مي شود.
نقطه كار: ماشين بايد در قسمت منحني يعني شروع حالت اشباع باشد زيرا اگر ولتاژ نامي ماشين روي قسمت خطي قرار گيرد به ازاء تغيير جزيي در جريان تحريك ولتاژ به شدت تغيير مي كند و كار ماشين ناپايدار است و چنانچه روي قسمت اشباع شده واقع شود امكان تنظيم ولتاژ ماشين محدود ميشود.
2- در صورتيكه اين مشخصه را براي سرعت ثابت ديگري بدست آوريم شكل كلي مشخصه تغيير نخواهد كرد در صورتيكه سرعت بالاتر انتخاب كنيم مشخصه در بالاتر و به ازاء سرعت پايين تر مشخصه در پايينتر تشكيل مي شود. 
نكته: اگر مشخصه را براي دور نامي داشته باشيم مي توان مشخصه را براي دورهاي ديگر نيز بدست آوريم.
مشخصه خارجي يا بارداري مولد تحريك مستقل: اين مشخصه عبارت است از تغييرات ولتاژ خروجي به ازاء تغييرات جريان بار در شرايط جريان تحريك و سرعت ثابت
VT = f.(IL)                        RF=const                                  n=const           
اين مشخصه در حقيقت نشان ميدهد كه با عبور جريان از آرميچر افت ولتاژ اهمي آرميچر IA.RA و افت ولتاژ ناشي از عكس العمل مغناطيسي چگونه باعث كاهش ولتاژ ترمينال مي شوند.

مولد تحريك شنت
در اين مولد مدار تحريك با آرميچر به صورت موازي وصل مي شود. جريان تحريك تابع ولتاژ خروجي و مقاومت مدار تحريك است و قسمتي (حدود 2 تا 3 درصد) از جريان آرميچر را تشكيل ميدهد. براي اينكه با جريان تحريك كم بتوان آمپر دور زياد براي مولد تامين نمود بايد تعداد دور سيم پيچ تحريك زياد باشد و در نتيجه سطح مقطع آن بايد كاهش يابد. ولتاژ خروجي مولد توسط يك مقاومت متغيير كه با سيم پيچ تحريك سري مي شود تنظيم مي گردد. مدار معادل الكتريكي مولد شنت بصورت زير است:
روابط زير نيز براي جريان آرميچر، ولتاژ خروجي و جريان تحريك مولد شنت برقرار است
راه اندازي مولد شنت و تعيين نقطه كار: شروع كار مولد شنت بر اثر وجود پسماند مغناطيسي قطبها مي باشد. يعني ژنراتور بوسيله محرك با دور نامي به گردش در مي آوريم به علت قطع خطوط قواي پس ماند توسط هاديهاي آرميچر، ولتاژي در آن القاء مي شود. اين ولتاژ به دو سر مدار تحريك اعمال مي گردد. جريان كمي از سيم پيچ قطبها عبور مي كند و درنتيجه فوران قطبها زياد شده (در صورتيكه فوران هم جهت پسماند باشد) و نيرومحركه الكتريكي بيشتري در آرميچر القاء ميشود و ولتاژ دو سر مدار تحريك بالا مي رود و مجدداٌ جريان تحريك افزايش يافته و ولتاژ القائي بزرگتر ميشود. افزايش ولتاژ القائي تا جايي ادامه مي يابد كه به VT = Rf.If برسد در اين مقدار نيرومحركه القايي ثابت مي ماند. اگر مشخصه Rf.If را رسم كنيم خطي بدست مي آيد كه در نقطه اي مانند B منحني بي باري را قطع مي كند به خط Rf.If خط القاء گفته ميشود نقطه تقاطع اين خط با منحني نقطه كار مولد شنت مي باشد.
مقاومت بحراني و دور بحراني: در صورتيكه مقاومت مدار تحريك آنقدر زياد شود كه خط القاء بر منحني بي باري مماس شود مولد حالت ناپايدار خواهد داشت و نيرومحركه نمي تواند مقدار معيني داشته باشد در اين حالت مي گويند مقاومت مدار تحريك بحراني است. اگر مدار تحريك مقاومت بيش از اين داشته باشد ديگر مولد تحريك نخواهد شد در صورتيكه سرعت مولد آنقدر كم باشد كه مشخصه بي باري بر خط القاء مماس شود نيز مولد به حالت ناپايدار خواهد رسيد اين دور نيز به دور بحراني معروف است.
عوامل زير سبب عدم تحريك يا عدم راه اندازي مولد شنت مي شود
1- پس ماند مغناطيسي ناچيز يا صفر باشد
2- جهت جريان تحريك طوري باشد كه فوران ناشي از فوران پسماند را خنثي كند
3- مقاومت مدار تحريك از حد معيني بيشتر باشد
4- جهت گردش آرميچر برعكس باشد كه سبب عكس شدن جريان تحريك مي شود
5- دور محور از حد معين كمتر باشد
مشخصه مغناطيسي يا بي باري مولد شنت: همانطور كه در مورد مولد تحريك مستقل گفته شد مشخصه بي باري تغييرات نيرومحركه القاء شده آرميچر نسبت به تغييرات جريان تحريك در شرايط بدون بار و دور ثابت است. مشخصه بي باري مولد شنت با مولد تحريك مستقل تفاوتي ندارد و بصورت زير مي باشد.

مشخصه بارداري يا خارجي مولد شنت: اين مشخصه تغييرات ولتاژ ترمينال به ازاء تغييرات جريان بار را در شرايط دور ثابت و ثابت RF = نشان ميدهد.در مولد شنت سه عامل باعث افت ولتاژ خروجي خواهد شد:
1- افت ولتاژ اهمي آرميچر
2- افت ولتاژ ناشي از عكس العمل
3- افت ولتاژ خروجي بدليل كاهش جريان تحريك بعلت كاهش ولتاژ خروجي ناشي از دو عامل بالا
نكته مهم ديگر در اين مولد با كاهش مقاومت بار جريان IL (بار) تا مقدار معيني Icr كه معمولاٌ 2 تا 5/2 برابر جريان نامي است افزايش مي يابد و سپس رو به كاهش مي رود. توجيه اين مسئله (يعني كاهش جريان بار با توجه به كم شدن مقاومت بار) به اين صورت است كه در نقطه برگشت منحني اثر كاهش ولتاژ خروجي آنقدر زياد است كه نمي تواند جريان خروجي بار زياد شود. شكل زير مشخصه خارجي مولد شنت را در مقايسه با مولد تحريك مستقل را نشان ميدهد.

كاربرد مولد شنت: از اين مولدها بعلت اينكه تنظيم ولتاژ بهتري دارند در شارژ باتري ها و تامين برق روشنايي و تغذيه سيم پيچ مولدهاي نيروگاهي استفاده ميشود.
مولد تحريك سري
در اين ژنراتور آرميچر با سيم پيچ تحريك به صورت سري قرار مي گيرد. از آنجا كه جريان بار از سيم پيچ آرميچر و سيم پيچ تحريك عبور كند بايد سيم پيچ تحريك داراي سطح مقطع زياد و تعداد دور كم باشد. مدار الكتريكي مولد سري و روابط آن بصورت زير است.

IS : جريان مدار تحريك سري                                         
RS : مقاومت سيم پيچ تحريك سري

مشخصه بي باري مولد سري:          (VT = f(IL)   n = const)
براي بدست آوردن مشخصه خارجي مولد سري دور مولد را به دور نامي مي رسانيم، اول حداكثر مقاومت بار را در مدار قرار ميدهيم در اين حالت با عبور جريان كم از آرميچر و تحريك، فوران اگر مخالف پسماند نباشد نيرومحركه القايي زياد ميشود كه در نتيجه ولتاژ خروجي افزايش مي يابد با كاهش مقاومت بار جريان تحريك كه برابر با جريان بار و آرميچر است زياد شده و قطبها را اشباع مي كند و در نتيجه فوران ثابت مي ماند و چون دور هم ثابت است نيرومحركه ثابت مي ماند اما ولتاژ خروجي به دلايل زير كاهش مي يابد:
1- افت ولتاژ در هادي هاي آرميچر
2- افت ولتاژ در سيم پيچي تحريك
3- افت ولتاژ بر اثر عكس العمل مغناطيسي آرميچر
كاربرد مولد سري: مورد استفاده مولد سري خيلي كم است چون ولتاژ دو سر آرميچر بر اثر تغيير جريان بار به طور قابل ملاحظه اي تغيير مي كند. در عين حال از اين مولد بعنوان جبران كننده افت ولتاژ خطوط جريان مستقيم استفاده ميشود.

مولد مختلط يا كمپوند
اين مولد داراي دو سيم تحريك سري و موازي با آرميچر مي باشد.
مولد كمپوند از نظر اتصالات سيم پيچ داراي دو نوع هستند:
1- مولد كمپوند با انشعاب بلند
2- مولد كمپوند با انشعاب كوتاه
مدار الكتريكي اين دو نوع كمپوند در شكل زير نشان داده شده است
روابط تحليل مولد كمپوند بصورت زير است                                    
مولدهاي كمپوند از نظر جهت فوران سيم پيچ تحريك سري بصورت زير تقسيم بندي مي شود:
1- مولد كمپوند اضافي
2- مولد كمپوند نقصاني
- مولد كمپوند اضافي: فوران ناشي در اين مولد فوران سيم پيچ تحريك شنت را تقويت مي كند در اين مولد سيم پيچ تحريك شنت نقش اصلي را بعهده دارد و سيم پيچ تحريك سري براي جبران افت ولتاژ اهمي و عكس العمل مغناطيسي آرميچر به كار ميرود.
- مولد كمپوند نقصاني: در اين مولد فوران ناشي از سيم پيچ تحريك سري با فوران ناشي از سيم پيچ تحريك شنت مخالفت مي كند.
مشخصه خارجي مولد كمپوند اضافي
براي مولد كمپوند اضافي در حالت بارداري ممكن است يكي از سه حالت زير پيش آيد:
1- با افزايش بار ولتاژ خروجي نيز زياد شود اين حالت را فوق كمپوند مي گويند. در اين حالت افزايش نيرومحركه ناشي از سيم پيچ سري بزرگتر از افت ولتاژ در اثر مقاومت و عكس العمل آرميچر است.
2- با افزايش بار ولتاژ خروجي ثابت مي ماند، در اين حالت افت ولتاژ ناشي از مقاومت و عكس العمل با افزايش نيرومحركه ناشي از سيم پيچ سري جبران ميشود. به اين حالت كمپوند مسطح گفته ميشود.
3- با افزايش بار، ولتاژ خروجي كاهش مي يابد در اين حالت افزايش نيرومحركه ناشي از سيم پيچ سري نمي تواند افت ولتاژها را جبران كند اين حالت را زير كمپوند مي گويند. حتي در اين حالت افت ولتاژ مولد كمتر از افت ولتاژ مولد شنت مي باشد. شكل اين مشخصه ها در زير رسم شده است.
مشخصه بارداري مولد كمپوند نقصاني
در اين مولد ولتاژ خروجي با افزايش بار به شدت كاهش مي يابد بدليل اينكه با افزايش بار جريان سيم پيچ تحريك سري زيادتر و در نتيجه فوران سيم پيچ سري بيشتر شده و ميدان اصلي را تضعيف تر مي كند پس ولتاژ خروجي به شدت كاهش مي يابد. مدار الكتريكي اين مولد و مشخصه بارداري آن در شكل زير رسم شده است.
كاربرد مولد كمپوند
از مولد كمپوند اضافي در تحريك مولدهاي نيروگاهي استفاده مي شود. از مولدهاي كمپوند تخت جاي استفاده مي شود كه نياز به ولتاژ ثابتي باشد و فاصله بين مولد و مصرف كننده كم باشد. در صورتيكه به علت وجود فاصله بين مولد و مصرف كننده در سيمها افت ولتاژ بوجود آيد از مولد كمپوند در حالت فوق استفاده مي شود از مولد كمپوند نقصاني در جوشكاري استفاده مي شود چون در ابتدا براي ايجاد قوس نياز به ولتاژ بالا و بعد از برقراري قوس براي جلوگيري از افزايش جريان ولتاژ بايد بشدت كاهش يابد.

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:30  توسط 66  | 

 

بهینه سازی مصرف انرژی در الکتروموتورهای صنعتی با استفاده از کنترل کننده های دور موتور

امروزه صرفه جوئي انرژي الكتريكي تنها از ديدگاه اقتصادي آن مورد توجه قرار نمي گيرد، بلكه آثار زيست محيطي آن نيز روز بروز اهميت بيشتري پيدا ميكند. از اين رو صرفه جوئي انرژي به معني حفاظت از محيط زيست است.

بيش از 65% انرژي الكتريكي، در صنايع، در موتورهاي الكتريكي مصرف ميشود.فنها، پمپ ها، و كمپرسورها، بارهاي اصلي موتورهاي الكتريكي هستند.

ميتوان اقدامات مختلفي براي صرفه جوئي انرژي الكتريكي در الكتروموتورهاي صنعتي بعمل آورد. در حالت كلي اين اقدامات به دو دسته تقسيم ميشود:

1-   اقدامات مربوط به طراحي موتور

2-   اقدامات مربوط به بهره برداري از موتورها

توليد كنندگان موتور اينك موفقیتهاي خوبي در زمینه طراحي و ساخت موتورهاي با راندمان بالا بدست آورده اند. هر چند كه قيمت اين موتورها بالاتر است، ولي محاسبات ساده اي نشان مي دهد كه استفاده از اين موتورها بسيار اقتصادي تر از انواع قديمي ترشان است.

اقدامات مربوط به بهره برداري از موتورها را نيز ميتوان به دو دسته تقسيم نمود:

1-   اقدامات روي موتور، نظير تهويه، روغنكاري، و بارگذاري

2-  استفاده از درايو



در كنار ماموريت اصلي درايوها كه همان تنظيم دور موتور است، مزاياي بيشمار ديگري نيز عايد ميگردد. كه صرفه جوئي انرژي يكي از اين مزايا است.استفاده از کنترل کننده های دور موتور هم در بهبود بهره وری تولید و هم در صرفه جویی مصرف انرژی - توانایی بازیافت انرژی تلفاتی در ترمزهای مکانیکی ویا انرژی تلف شده در مقاومت ترمز درایوهای معمولی به شبکه - در کاربردهای صنعتی ، علاوه بر پیامدهای اقتصادی آن ، کاهش آلاینده های محیطی را نیز بدنبال خواهد داشت.

قوانين افينيتي در كاربردهاي فن و پمپ پايه نظري صرفه جوئي انرژي، با استفاده از درايو هستند. بر طبق اين قوانين تنها باكاهش ده درصد از دور موتور 27% در مصرف انرژي الكتريكي صرفه جوئي خواهد شد. همچنين اگر دور موتور را 20% كاهش دهيم، بايد انتظار 49% صرفه جوئي انرژي داشته باشيم.

بايد توجه كرد كه فنها و پمپ ها عمده ترين بارهاي موتورهاي الكتريكي هستند. اينها از ادواتي نظير دمپرها و يا شيرهاي خفه كن براي تنظيم دبي استفاده ميكنند. اما اين روشها انرژي را تلف ميكنند.

عملكرد اين تجهيزات را ميتوان به راننده اتومبيلي تشبيه نمود كه براي كاهش سرعت، در حالي كه پدال گاز را تا آخر فشرده است، از پدال ترمز استفاده ميكند. نمونه هاي عملي متعددي از كاربرد درايو در صرفه جوئي انرژي الكتريكي وجود دارد. براي مثال شركت اطلس كوپكو با استفاده از درايو موفق شده است، مصرف انرژي كمپرسورهاي توليدي خود را به ميزان 35% كاهش دهد.

در كنار اين دستاورد مهم اطلس كوپكو توانسته است، با استفاده از درايو، فشار كمپرسور را با انعطاف و پايداري بيشتري كنترل نمايد- جريان راه اندازي را به كمتر از 10% جريان نامي موتور كاهش دهد- و ضريب قدرت را به بيش از 95% برساند. و بدين ترتيب كمپرسورهاي اطلس كوپكو نيازي به خازن اصلاح ضريب قدرت ندارند.

از سال 1994 ببعد كه شرکت اطلس كوپكو اين كمپرسورها را معرفي كرده است توانسته است بازار كمپرسورهاي دنيا را تسخير كند.

در کاربردهایی نظیر پمپ و فن استفاده از درایوها  تا 50% در کاهش مصرف انرژی موثر است.

پتانسيل قابل توجهي براي صرفه جوئي انرژي در نيروگاهها وجود دارد. مصرف داخلي نيروگاهها ميتواند بين 5 تا 14 درصد برق توليدي نيروگاه باشد. اين ميزان انرژي عمدتا" در ID فن، FD فن، فيد پمپ، فنهاي كولينگ تاور، و پمپ هاي سيركولاسيون و خنك كن مصرف ميشود.

يك مطالعه موردي از صرفه جوئي مصرف انرژي در نيروگاههاي هند نشان ميدهد، كه از مجموع 22 واحد نيروگاهي 210 مگاواتي، با بكارگيري درايو در فنهاي ID و يا پمپ هاي BFP ، سالانه بالغ بر 158 ميليون كيلووات ساعت انرژي، به ارزش 11.3 ميليون دلار صرفه جوئي حاصل ميگردد. اين درحالي است كه ارزش سرمايه گذاري اوليه 25.7 ميليون دلار بوده است. و بدين ترتيب ميتوان انتظار داشت كه در كمتر از 2.3 سال سرمايه گذاري اوليه مستهلك شده و عوايد سرشاري نصيب نيروگاهها گردد.

پتانسيل صرفه جوئي انرژي در صنايع سيمان از نيروگاهها نيز بالاتر است. در ايران حدود 9%  انرژي الكتريكي در كارخانجات سيمان مصرف ميشود. در يك مطالعه نشان داده شد كه ميزان شدت انرژي الكتريكي در كارخانجات منتخب سيمان در ايران، در مقايسه با استانداردهاي جهاني آن ، خيلي بالاتر است.

برآوردها نشان میدهد که در كارخانجات منتخب سالانه بالغ بر 138 ميليون كيلووات ساعت امكان صرفه جوئي انرژي وجود دارد.

محاسبات ساده اي نشان خواهد داد كه در هر خط توليد سيمان بطور متوسط سالانه تا 1.5 ميليون دلار و در كل خطوط توليد سيمان در ايران، كه بالغ بر 65 خط توليد ميشود، سالانه پتانسيل 90 ميليون دلار صرفه جوئي انرژي وجود دارد.

 

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:29  توسط 66  | 

 

مقدمه

بحت انرژي از دو ديدگاه اقتصادي و زيست محيطي حائز اهميت است . بهينه سازي مصرف انرژي به اين معني است كه  بتوان با استفاده از تجهيزات و يا مديريت بهتر همان كار را ولي با مصرف انرژي كمتر انجام بدهيم .

صرفه جوئي انرژي مي تواند با استفاده از تجهيزات بهتر نظير : عايق بندي مطلوب ، افزايش راندمان سيسمتهاي حرارتي، و بازيابي تلفات حرارتي بدست آيد از طرف ديگر اعمال مديريت انرژي، بمنظور درك سيستمهاي موجود و طريقه استفاده از آنها،  ميتواند در كاهش مصرف انرژي نقش مهمي داشته باشد. در سياست گذاري انرژي بايد سازمانها رويكرد سيستمي داشته باشند. براي مثال در بهينه سازي مصرف انرژي الكتريكي هدف تنها كاهش هزينه هاي انرژي يك يا چند الكتروموتور مشخص نيست،  بلكه بايد آثار اقدامات مورد نظر روي ساير سيستمها نيز بدقت مورد توجه قرار گيرد. در یک بنگاه اقتصادی صرفه جوئی انرژی میتواند موجب برتری رقابتی بنگاه گردد.

در اغلب بخشهاي صنعتي انرژي الكتريكي مهمترين منبع انرژي صنعت بشمار مي رود . از آنجا كه موتورهاي الكتريكي، مصرف كننده اصلي انرژي الكتريكي در كارخانجات صنعتي ميباشند. لذا بهينه سازي مصرف انرژي در موتورهاي الكتريكي كه موضوع مقاله  است از اهميت ويژه اي برخوردار خواهد بود . براي درك اهميت بهينه سازي مصرف انرژي به اين مورد اشاره مي كنيم كه اگر راندمان موتورهاي الكتريكي القائي موجود در اروپا تنها به ميزان 1% افزايش يابد، هزينه مصرف انرژي الكتريكي به ميزان 6/1 ميليارد دلار در سال كاهش خواهد يافت .



آمار منتشر شده از سوي وزارت نيرو نشان مي دهد در سال 1373 ،  5/38% از كل انرژي الكتريكي مصرف شده در ايران توسط موتورهاي الكتريكي بوده است[F1]. البته اين ميزان در كشورهاي صنعتي تا 65% مي رسد و شاخص خوبي براي نشان دادن سطح صنعتي شدن يك كشور مي باشد[10] .  اهداف بهينه سازي مصرف انرژيرا میتوان بصورت زیر بیان نمود:

  • استفاده منطقي از انرژي
  • حفظ منابع انرژي
  • اصلاح ميزان مصرف انرژي در بخشهاي مصرف كننده انرژي
  •  كاهش گازهاي گلخانه اي و آلودگي هوا
  • اصلاح وضعيت موجود
  •  کسب برتری رقابتی در بنگاههای اقتصادی

مي توان اقدامات مختلفي براي صرفه جوئي انرژي الكتريكي در الكتروموتورهاي صنعتي بعمل آورد. در حالت كلي اين اقدامات به دو دسته تقسيم ميشود:

  • 1-     اقدامات مربوط به طراحي موتور
  • 2-     اقدامات مربوط به بهره برداري از موتورها

اقدامات مربوط به بهره برداري از موتورها را نيز ميتوان به دو دسته تقسيم نمود:

  • 1-     اقدامات روي موتور، نظير تهويه، روغنكاري، و بارگذاري
  • 2-     استفاده از درايو یا کنترل کننده دور موتور

در اين مقاله نخست روشهاي بهينه سازي مصرف انرژي در موتورهاي الكتريكي را مورد بحث قرار مي دهيم  سپس كاربرد درايوها در كنترل موتورهاي الكتريكي و تاثيري كه آنها مي تواند در صرفه جوئي مصرف انرژي بگذارند مورد بررسي قرار خواهد گرفت .

1- مصرف انرژي در موتورهای الکتریکی
در سالهاي اخير بهينه سازي مصرف انرژي در صنايع بدلايل اقتصادي و زيست محيطي اهميت بيشتري يافته و موجب شده است كه اقدامات عملي گسترده اي در اين زمينه بعمل آيد. علي رغم اينكه يكي از بزرگترين مصرف كنندگان انرژي الكتريكي در بخش صنعت موتورهاي الكتريكي مي باشند ، ليكن در زمينه افزايش بازدهي مبدلهاي انرژي الكتريكي به مكانيكي مستقر در صنايع اقدامات عملي چنداني بعمل نيامده است. بديهي است كه  افزايش بازدهي محرك هاي صنعتي نه تنها از نظر اقتصادي مورد توجه استفاده كنندگان مي باشد بلكه در برنامه‌ريزي انرژي در سطح ملي نيز حائز اهميت است .

مطالعات انجام شده در صنایع ایران حکایت از وضعیت نابسامان انتخاب و بهره برداری از موتورهای الکتریکی دارد [F1]. بر اساس این تحقیقات اغلب موتورها بزرگتر از میزان نیاز انتخاب شده و در شرائط بدی نگهداشت میشوند. استفاده از موتورهای با راندمان بالا در ایران رایج نبوده و گزارش موثری از استفاده از درایو جهت صرفه جوئی انرژی در دست نیست. كاربردهاي صنعتي بسياري مي تو.ان يافت كه موتورها در بازدهي بسيار پايين تر از مقدار حداكثر قرار دارند . بعنوان مثال در يكي از كارخانجات صنعتي كشورمان در يك مورد ، متوسط توان مصرفي در يك موتور القائي سه فاز صنعتي تنها 28% توان نامي اندازه گيري شده است [F1]. بديهي است  پايين بودن توان خروجي، تا اين حد تاثيرات منفي قابل توجهي بر بازدهي و ضريب توان موتور خواهد داشت .

از سوی دیگر دولت نیز نتوانسته است در ترویج فرهنگ استفاده بهینه از انرژی الکتریکی توفیقات خوبی داشته باشد. بعنوان مثال وزارت نیرو و سازمانهای وابسته به آن که مشخصا در زمینه بهینه سازی مصرف انرژی الکتریکی در سطح کلان عمل میکند هنوز در ارتباط با کاهش مصرف داخلی نیروگاهها اقدام موثری بعمل نیاورده است. در حالیکه پتانسیل صرفه جوئی انرژی الکتریکی زیادی در نیروگاهها وجود دارد.

2- موانع در سیاست گذاری انرژی

در ایران موانعی که سر راه بهینه سازی مصرف انرژی الکتریکی وجود دارد را میتوان بصورت زیر دسته بندی نمود:

  •  سیاست دولت در پرداخت سوبسید به صنایع
  • عدم آگاهی مدیران صنایع از روشهای صرفه جوئی انرژی الکتریکی
  • ضعف دانش فنی مهندسین مرتبط با بهینه سازی مصرف انرژی
  • نگرانی از ضریب اطمینان درایو و آثار منفی آن روی شبکه و موتور
  • نداشتن یک رویکرد سیستمی در استفاده از موتورهای با راندمان بالا

3- انتخاب موتور مناسب
موتورهاي القائي سه فاز و يك فاز به دليل تنوع  مصرف در كاربردهاي زيادي مورد استفاده قرار مي گيرند. مشخصه هاي بارمكانيكي ناشي از كاربرد و مورد مصرف مي باشد. بديهي است موتور در صورتي مي تواند بار مكانيكي متصل به آن را تامين كند كه مشخصه عملكردي موتور منطبق بر مشخصه بار مكانيكي باشد .

3-1- تطابق موتور و بار
همانطور كه در بالا  اشاره شد موتور و بار داراي مشخصه هاي خاص خود مي باشند . منظور از تطابق بين موتور و بار انطباق بين مشخصه هاي موتور و مشخصه هاي بار متصل به محور موتور ميباشد .

مشكل اصلي در صنايع كشور آن است كه در اغلب موارد تطابق مطلوبي بين مشخصه هاي بار و موتور وجود ندارد. توان اغلب موتورها بيش از بار متصل به محور شان مي باشد و با توجه به اينكه قيمت تمام شده موتور متناسب با توان آن مي‌باشد، لذا بديهي است انتخاب موتور با توان بيش از نياز بار، علاوه بر افزايش هزينه اوليه موتور موجب افزايش ساير هزينه ها از قبيل كابل كشي و نصب و راه اندازي و تعمير خواهد شد .

 از طرف ديگر در صورتيكه موتور انتخاب شده بزرگتر از حد لازم باشد در اين صورت موتور در حالت بار كامل و يا نزديك به بار كامل كار نكرده و لذا بازدهي آن پايين تر از مقدار حداكثر آن خواهد بود . و خود اين امر اشكالات جدي در بهينه سازي مصرف انرژي ايجاد خواهد كرد .

در موتورهاي القائي سه فاز در صورت كاهش ميزان بازدهي موتور ، به ويژه به ميزان كمتر از 80% بار كامل ، شاهد كاهش قابل توجه در بازدهي موتور خواهيم بود . متاسفانه در اكثر  موارد به اين نكته توجه نشده و تنها تاثير نامطلوب انتخاب موتور بزرگتر از حد لازم بر هزينه اوليه مورد توجه قرار مي گيرد . در صورتيكه محاسبات انجام شده حاكي از آن است كه تاثير  انتخاب نامناسب موتور بر هزينه هاي متغير (هزينه اتلاف انرژي اضافي) قابل توجه و بمراتب بيش از افزايش هزينه ثابت اوليه مي باشد .

يك مثال  اين موضوع را روشن خواهد كرد :

مثال : فرض مي كنيم براي انجام يك كار مكانيكي  ، موتور القائي سه فاز با توان خروجي 110 كيلو وات مناسب باشد و بجاي آن موتور با توان 132 كيلو وات انتخاب شود . اطلاعات زير را مورد توجه قرار مي دهيم :

  •  بازدهي موتور در بار كامل = 2/94%
  • بازدهي موتور در 3/83% بار كامل = 5/92%
  • طول عمر مفيد موتور = 15 سال
  • ضريب كاركرد = 8/0

با انجام كمي محاسبات مي توان نتيجه گرفت كه مصرف انرژي در طول 15 سال بمقدار 600/937 كيلو وات ساعت افزايش پيدا خواهد كرد. مطالب فوق اين واقعيت را بيان مي كند كه انتخاب موتور مناسب به لحاظ اقتصادي حائز اهيمت فراوان بوده و لذا تطابق بين بار و موتور از اهميت ويژه اي برخوردار است . انتخاب موتور بزرگتر از حداقل مورد نياز به دلايل زير غير اقتصادي مي باشد :

  • 1-     با افزايش توان موتور قيمت آن يعني هزينه اوليه افزايش مي يابد .
  • 2-      با افزايش توان موتور  هزينه هاي نگهداري و تعميرات آن افزايش مي يابد .
  • 3-    با افزايش توان موتور بدليل پايين آمدن ضريب بار ، بازدهي موتور كاهش يافته و بدين ترتيب انرژي تلف شده افزايش مي يايد .

3-2- موتورهای با راندمان بالا (Energy Efficient Motors)

گرچه قیمت موتورهای با راندمان بالا بیشتر از موتورهای استاندارد است، ولی در اغلب کاربردها استفاده از آنها کاملا اقتصادی است. مخصوصا در کاربردهائی که:

  • مدت زمان روشن بودن موتور بیش از زمان خاموش بودن ان باشد
  • مدت زمان روشن بودن موتور بیش از 2000 ساعت در سال باشد
  • گشتاور بار نسبتا ثابت بوده و موتور بدرستی به بار تطبیق شده باشد.

استفاده از موتورهای با راندمان بالا توصیه میشود. بارهائی چون میکسرها، نقاله ها و فیدرها از این نوع هستند. اهمیت موضوع وقتی آشکار میشود که توجه کنیم که هزینه انرژی مصرفی یک الکتروموتور در طول عمر مفید آن 10 تا 20 برابر قیمت موتور است[16].  موتورهای با راندمان بالا علاوه بر صرفه جوئی انرژی معمولا مزیتهای دیگری نیز دارند. برای مثال آنها جریان های بیشتری را در هنگام راه اندازی تحمل میکنند و حرارت و نویزکمتری تولید میکنند. هر چند که موتورهای با راندمان بالا تنها 2 تا 3 درصد راندمان را بهبود میدهند، اما اگر در انتخاب و بکارگیری آنها بجای یک موتور کل سیستم در نظر گرفته شود، اثر بخشی کار بالا خواهد رفت. با رویکرد سیستمی به موضوع و در نظر گرفتن عوامل دیگر نظیر هزینه های تعمیر و نگهداشت و بهره برداری میتوان به کارائی این موتورها بیشتر پی برد.  ميزان صرفه جوئي انرژي در صورت استفاده از موتور با راندمان بالا، به جاي موتورهاي استاندارد از رابطه زير قابل محاسبه است:

در رابطه فوق hp توان موتور بر حسب اسب بخار، l ضريب بار( در صد از بار كامل تقسيم بر 100)، hr ساعات كار در طول سال، c متوسط قيمت انرژي (قيمت هر كيلووات ساعت انرژي)، std راندمان موتور استاندارد (%)، و ee راندمان موتور با راندمان بالا (%) است.
توصيه ميشود هنگام خريد موتور و يا سفارش ساخت ماشين به سازندگان ماشين از موتورهاي با راندمان بالا استفاده گردد. همچنين معمولا اقتصادي است كه بجاي سيم پيچي كردن موتورهاي سوخته و استفاده مجدد از آنها، از موتورهاي با راندمان بالا استفاده گردد. زمان بازگشت سرمايه(به سال) در خريد اين نوع موتورها، بطور ساده عبارت خواهد بود از:

4- اقدامات مورد نياز براي بهبود عملكرد سیستمهای مرتبط با الكتروموتورها

يك موتور معمولا با اجزا و سيستمهاي ديگر در ارتباط است. براي بهبود عملكرد الكتروموتورها لازم است سيستمهاي مرتبط با موتور نيز در نظر گرفته شود. اين سيستمها شامل شبكه برق، كنترل كننده هاي موتور، الكتروموتور و سيستم انتقال نيرو ميگردد.

4-1-   كيفيت توان  Power Quality

مسائل كيفيت توان شبكه شامل كليه اختلالات شبكه برق مثل عدم تقارن در ولتاژ، افت ولتاژ، چشمك زدن، اسپايك، سيستم ارت بد ، هارمونيكها و نظاير آن ميشود [5]. از آنجا كه كيفيت توان تاثير زيادي در اتلاف انرژي دارد، لازم است يك مهندس مجرب وضعيت شبكه برق تاسيسات را زير نظر داشته باشد.

4-2- تثبيت ولتاژ شبكه

تا آنجا كه ممكن است بايد ولتاژ اعمالي به موتور نزديك به ولتاژ كار موتور باشد. گرچه تغييرات 10% در ولتاژ موتور مجاز است اما از نقطه نظر اتلاف انرژي ميزان انحراف از ولتاژ نامي موتور بايد كمتر از 5% باشد. تغيير ولتاژ موتور موجب افت ضريب قدرت، عمر مفيد موتور و راندمان ميگردد [6]. شكل(1)

شکل(1): بررسی تائیر تغییرات ولتاژ اعمالی به موتور روی تورک، جریان راه اندازی، جریان بار کامل، راندمان و ضریب قدرت

اگر ولتاژ موتور بيش از 5% كاهش پيدا كند، راندمان بين 2 تا 4 درصد افت پيدا كرده و دماي موتور حدود 15 درجه افزايش مي يابد و اين افزايش دما عمر عايق موتور را كاهش خواهد داد. در شكل(2) عمر موتور در دماهاي كار مختلف و با كلاسهاي عايقي مختلف نشان داده شده است.

شکل (2): بررسی تاثیر دمای کلافهای موتور روی عمر مفید آن برای موتورهای با کلاس عایقی مختلف

4-3-    عدم تقارن فاز
عدم تقارن فاز بايد كمتر از 1% باشد. عدم تقارن فاز بصورت زير توسط NEMA تعريف شده است:

براي مثال اگر ولتاژهاي فاز بترتيب 462 و 463 و 455 ولت باشد. متوسط ولتاژ سه فاز برابر با 460 ولت ميشود و در صد عدم تقارن بصورت زير محاسبه خواهد شد:

ضريب قدرت
ضريب قدرت پائين موجب افزايش جريان كابلها و ترانسقورماتورها و افت ولتاژ شده و بدين ترتيب باعث كاهش ظرفيت سيستم تغذيه ميشود [7]. ضريب قدرت پائين ناشي از بار كم در شفت موتور است. در شكل (3) منحنيهاي ضريب قدرت براي بارهاي مختلف و رنجهاي تواني متفاوت موتورها آمده است[8] . بوضوح مشاهده ميشود با كاهش بار موتور ضريب قدرت تغييرات قابل توجهي ميكند.

5- روشهاي عملي براي افزايش بازدهي موتور
اشاره شد كه بالا بردن بازدهي متوسط موتورهاي القائي به لحاظ اقتصادي از اهميت ويژه اي برخوردار است . بديهي است نحوه عمل و دستيابي به نتايج مطلوب وابسته به نوع و اندازه موتور ، شرايط بارگذاري ، نحوه نگهداري و غيره بوده و لذا نمي توان دستور العمل كلي براي ارتقاء بازدهي كليه موتورهاي القائي ارائه داد. بطور كلي اقدامات  لازم براي بالا بردن بازدهي موتورهاي القائي را مي توان به دو دسته تقسيم نمود . دسته اول تمهيداتي است كه در زمان طراحي و ساخت موتور بايد بكار گرفت . دسته دوم شامل مجموعه اقدامات عملي جهت بالا بردن بازدهي موتورهاي القائي در حال كار در صنايع مي شود .

اقدامات عملي ساده اي منجر به افزايش راندمان كار مي گردد به عنوان مثال مقدار معمول جريان بي باري در موتورهاي القائي سه فاز در محدوده 3 تا 5 درصد جريان نامي موتور است . ولي در بررسي هاي بعمل آمده مشاهده شده است كه در اكثر موراد جريان بي باري موتور بيشتر از اين مقدار بوده و در برخي موارد تا 12% جريان نامي افزايش يافته است . اين افزايش در جريان بي باري موتور بعلت عدم نگهداري صحيح از موتور است . در اكثر موارد اين شرائط نامطلوب در حالات بارگذاري نيز مشاهده مي شود. به اين معني كه با اعمال بار مكانيكي غیر مفید به محور موتور ، بصورت اصطكاكهای مکانیکی ناشي از عدم نگهداري صحيح، موجب میشود که موتور بار اعمال شده را در جريان الكتريكي بيشتري تامين مي كند . و در واقع بخشي از توان الكتريكي ورودي صرف تامين بار و قسمت ديگر آن براي غلبه بر اصطكاك مكانيكي مصرف مي شود .

بدين ترتيب موارد زير را در ارتباط با تلفات اهمي موتور ميتوان بيان كرد :

  • 1-     تلفات اهمي موتور متغير بوده و تابعي از ميزان و نحوه بارگذاري موتور مي باشد .
  • 2-    در بسياري از موارد عدم نگهداري صحيح از قسمتهاي چرخان موتور به ويژه بلبرينگ  محور موتور ، موجب ايجاد بار مجازي ناشي از افزايش اصطكاك مكانيكي شده و لذا جريان ورودي موتور در حالت  بي باري و بار از حد مطلوب و اعلام شده توسط سازنده بيشتر خواهد شود
  • 3-    افزايش جريان ورودي موتور موجب بالا رفتن تلفات اهمي و حرارت ايجاد شده در سيم پيچ شده و لذا درجه حرارت اطراف سيم پيچ افزايش خواهد يافت .

از مشخصات بارز تلفات مكانيكي موتور دشواري محاسبه ميزان  و تعيين منابع آن است .  بخش عمده تلفات مكانيكي در قسمت هاي چرخان موتور بوده و ناشي از اصطكاك و بار مي باشد و لذا ميزان تلفات مكانيكي تا حد زيادي وابسته به شرايط نگهداري موتور دارد . با روغن كاري مناسب و بموقع بلبرينگ و نظافت  قسمتهاي چرخان موتور و همچنين اطمينان از بالانس بودن محور ، ميتوان تلفات مكانيكي موتور را به حداقل رساند بدين ترتيب در ارتباط با تلفات مكانيكي موتور ميتوان موارد زير را اظهار داشت :

  • 1-     ميزان تلفات مكانيكي تابعي از شرايط نگهداري موتور مي باشد .
  • 2-    با انجام اقدامات مناسب در نگهداري موتور مي توان تلفات مكانيكي را بسادگي در مقدار حداقل خود نگه داشت.
  • 3-      تلفات مكانيكي نيز منجر به افزايش درجه حرارت بويژه در قسمتهاي چرخان موتور مي شود .

انواع تلفات موتور بدون توجه به نوع آن منجر به ايجاد حرارت مي شود بدين ترتيب خنك كاري موتور بويژه در شرائطي كه موتور زير بار است از اهميت ويژه اي برخوردار است . بالا رفتن درجه حرارت موتور باعث كاهش عمر مفيد آن مي‌شود .

در موارد زيادي مشاهده شده است  كه بدليل عدم رعايت نكات ساده و مهم در نگهداري موتور باعث كاهش بازدهي سيستم خنك كن شده و درجه حرارت موتور در حالت بار نامي افزايش پيدا كند . در اين گونه موارد گاهي اوقات بجاي رفع اشكال نگهداري، اقدام به جايگزين كردن موتور با توان بيشتر مي شود كه اين امر خود منجر به كاهش بازدهي سيستم و اتلاف انرژي خواهد شد .

بر اساس تجارب شركت پرتو صنعت نوع ديگري از اشكالات مربوط به سيم پيچي موتورهاي معيوب توسط افراد غير متخصص مي شود.  مشاهدات ما نشان مي دهد كه در برخي از موارد موتور بدفعات مورد سيم پيچي قرار مي گيرد . عدم رعايت نكات فني در عايق بندي موتور سيم پيچي شده و همچنين استفاده از ابزار و آلات غير اصولي در درآوردن سيم پيچي سوخته شده موتور نتايج بدي بدنبال دارد .

بعنوان يك اصل تجربي موتورهائي كه به اين شيوه سيم پيچي مجدد مي شوند براي كار با اينورتر يا كنترل كننده دور موتور مناسب نيستند. اغلب اين موتورها بدليل آسيب هائي كه به مدار مغناطيسي آنها در حين سيم پيچي وارد مي شود از جريان بي باري بالاتر از حد معمول برخوردار بوده و عايق بندي آنها براي كار  با اينورتر مناسب نمي باشد . اين نوع موتورها حرارت بيشتري نسبت به موتورهاي سالم دارند و تلفات انرژي زيادي ايجاد مي كنند . ضمناً اين موتورها بمراتب آسيب پذيرتر از موتورهاي فابريك مي باشند . توصيه مي شود در سيم پيچي موتورهاي آسيب ديده از تكنيسين هاي مجرب و ابزارآلات  مناسب استفاده شود . ضمناً تا زمانيكه اطمينان از فرآيند كار حاصل نشده باشد از استفاده از اين نوع موتورها همراه با كنترل كننده دور موتور اجتناب گردد .

توصيه مي شوداگر قصد تعويض اين نوع موتورها را داريد و يا ميخواهيد موتورهاي جديدي تهيه كنيد، موتورهائي تهيه كنيد كه راندمان بالاتري داشته باشند.

6- دستور العملهاي لازم براي بهبود عملكرد موتورهاي الكتريكي
اشاره شد كه عوامل موثر در بازدهي موتورهاي الكتريكي را مي توان بصورت زير بيان نمود :

  • عوامل موثر در مراحل طراحي و ساخت
  • عوامل موثر در بهره برداري

بررسی عوامل موثر فوق خارج از حوصله اين مقاله است. یک مطالعه خوب از عوامل فوق توسط آقای دکتر اوروعی در سال 1373 انجام گرفته است .[F1] در اینجا بطور خلاصه به عوامل موثر در بهره برداری از موتور که به افزایش بازدهی آنها منجر خواهد شد اشاره میشود.در جدول(1)  خلاصه اي از عوامل موثر در بازدهي موتورهاي الكتريكي آمده است .

جدول (1) عوامل موثر در بازدهي موتورهاي الكتريكي

همان طور كه مشاهده مي شود مجموعه اقدامات ساده فوق خصوصاً اقداماتي كه به عوامل وابسته به شرايط نگهداري موتور مي شود مي تواند منجر به صرفه جوئي اقتصادي قابل توجهي شود .

براي اطمينان يافتن از اينكه بازدهي موتورهاي مستقر در صنايع و ساير كاربردها در حد مطلوب قرار دارد مي توان نسبت به تدوين شناسنامه صنعتي براي هر موتور ( و بويژه موتورهاي بزرگ) اقدام نموده و با ثبت اطلاعات مورد نظر از جمله موارد زير بازدهي اين موتور ها را مورد بررسي قرار داد :

  • ميزان بار (درصد از بار كامل)
  • ميزان تغييرات بار ( درصد از بار كامل)
  • ميزان تغييرات سرعت (درصد از سرعت سنكرون)
  • ميزان تغييرات ولتاژ شبكه (درصد از ولتاژ نامي)

توصيه ميشود كارخانجاتي كه در آنها تعداد موتور مورد استفاده زياد مي باشد نسبت به جمع آوري اطلاعات فوق و اقدامات اصلاحي اقدام نمايند.

7- دسته بندي اقدامات  لازم براي بهينه سازي مصرف انرژي
براي روشن شدن تاثير اقدامات مختلف براي افزايش بازدهي موتورهاي الكتريكي در جدول(2)  نتايج قابل انتظار اين اقدامات براي دسته اي از موتورهاي القائي با توان خروجي 2/2 تا 30 كيلو وات نمايش داده شده است[F1] .

جدول (2) : اقدامات محتلف براي افزايش بازدهي موتورهاي الكتريكي با توان 2/2 تا 30 كيلو وات .

8- تكنولوژي الكترونيك  قدرت و درایوهای AC
تکنولوژی الکترونیک قدرت(Power Electronics)، بهره وری و کیفیت فرایندهای صنعتی مدرن را بی وقفه بهبود میبخشد. امروزه با کمک همین تکنولوژی امکان استفاده از منابع انرژی غیرآلاینده بازیافتی(Renewable Energy)، نظیر باد و فتو ولتائیک فراهم شده است. تخمین زده میشود که با استفاده از الکترونیک قدرت، حدود 15 تا 20 درصد امکان صرفه جوئی انرژی الکتریکی وجود دارد[17]. در واقع با کاهش بیوقفه قیمت ها در عرصه الکترونیک قدرت زمینه برای حضور آنها در کاربردهای صنعتی، حمل ونقل و حتی خانگی فراهم میگردد.

نیروی محرک بيشتر پمپها و  فن ها  موتورهاي القائي هستند که در دور ثابت کار میکنند. ليكن در سالهاي اخير با پيشرفتهاي انجام گرفته در زمينه تكنولوژي الكترونيك قدرت ، استفاده از موتورهاي القائي قفس سنجابي همراه با كنترل كننده دور موتور (AC DRIVE يا اينورتر يا بطور ساده درايو) رو به گسترش است . درایوها دستگاههائی هستند که توان ورودی با ولتاژ و فرکانس ثابت را به توان خروجی با ولتاژ و فرکانس متغیر تبدیل میکنند. باید توجه کرد که دور یک موتور تابعی از فرکانس منبع تغذیه آن است. برای این منظور یک درایو نخست برق شبکه را به ولتاژ DC تبدیل کرده و سپس آنرا با استفاده از یک اینورتر مجددا به ولتاژ AC  با فرکانس و ولتاژ متغیر تبدیل میکند. در شکل(4) قسمتهای اصلی یک درایو ولتاژ پائین نشان داده شده است. همانطور که مشاهده میکنید قسمت اینورتر متشکل از سوئیچهای قدرتی است که در سالهای اخیر تغییرات تکنولوژیک زیادی پیدا کرده اند. در واقع با معرفی سوئیچهای قدرتی چون IGBT با قیمتهای رو به کاهش، زمینه برای عرضه درایوهای با قیمت مناسب فراهم شد. در هر حال خاطر نشان میکنیم که شکل موج خروجی درایو ترکیبی از پالسهای DC با دامنه ثابت است. این موضوع موجب میشود که خود درایو منشا اختلالاتی در کار موتور شود. برای مثال کیفیت شکل موج خروجی درایو میتواند سبب اتلاف حرارتی اضافی ناشی از مولفه های هارمونیکی فرکانس بالا در موتور شده و یا موجب نوسانات گشتاور Torque Pulsation در موتور گردد. با این حال درایوهای امروزی بدلیل استفاده از سوئیچهای قدرت سریع این نوع مشکلات را عملا حذف کرده اند.

شکل(4): ساختمان یک کنترل کننده دور موتور ( فقط قسمتهای قدرت نشان داده شده است).

كنترل كننده هاي دور موتورهاي الكتريكي هر چند كه ادوات پيچيده اي هستند ولي چون در ساختمان آنها از مدارات الكترونيك قدرت استاتيك استفاده مي شود و فاقد قطعات متحرك مي باشند،  از عمر مفيد بالائي برخوردار هستند . مزيت ديگر كنترل كننده هاي دور موتور توانائي آنها در عودت دادن انرژي مصرفي در ترمزهاي مكانيكي و يا مقاومت هاي الكتريكي به شبكه مي باشد . در چنين شرائطي با استفاده از كنترل كننده هاي دور مدرن مي توان از اتلاف اين نوع انرژي جلوگيري نمود . بطوريكه در برخي كاربردها قيمت انرژي بازيافت شده از اين طريق ، در كمتر از يكسال معادل هزينه سرمايه گذاري سيستم بازيافت انرژي مي شود .

9- كنترل كننده هاي دور موتور
تا اينجا درمورد مجموعه اقداماتي كه  براي بهينه سازي مصرف انرژي ميتوانستيم روي موتورهاي الكتريكي اعمال كنيم بحث شد. اشاره شد كه در كشور ايران در سال 73 بيش از 35 درصد مصرف انرژي در موتورهاي الكتريكي بخش صنعت بوده است . البته اين مقدار در كشورهاي صنعتي تا 65 در صد نيز ميرسد. اين امر اهميت بهينه سازي مصرف انرژي در موتورهاي الكتريكي را نشان ميدهد. در اين قسمت از مقاله در مورد تاثير استفاده از كنترل كننده هاي دور موتور در كاهش مصرف انرژي صحبت خواهيم كرد. سعي ميكنيم با استفاده از تعدادي مثال اهميت

موضوع را نشان دهيم . بطور خلاصه در كاربردهاي صنعتي زيادي، صرفه جوئي كه با استفاده از كنترل كننده دور موتور در مصرف انرژي حاصل ميشود بمراتب بيشتر از اقدامات برشمرده در قسمتهاي قبلي مقاله است.

استفاده از موتورهاي مجهز به كنترل كننده دور موتور ، امكان اعمال تغييرات لازم در سرعت موتور فن و يا پمپ را بطور دائم فراهم آورده و بدين ترتيب مي توان با توجه به فرآيند مورد نظر از اتلاف انرژي ايجاد شده در تنظيم كننده هاي مكانيكي جلوگيري نمود . با استفاده از درایو موتور به بار تطبیق داده شده ، و هر گونه نياز به خاموش و روشن كردن موتور و یا ادوات تنظیم کننده نظیر شیر یا دمپر حذف مي گردد . همچنين كنترل سرعت دقيق و متعاقب آن توان خروجي قابل دسترسي بوده و با توجه به استفاده از مدارات الكترونيكي ، استهلاك قسمتهاي كنترل كننده در حد بسيار پايين خواهد بود . تصميم گيري در مورد استفاده از موتور با كنترل كننده دور متغيير بستگي به نوع كاربرد مورد نظر دارد . از آنجا كه هزينه اوليه اين سيستمها (كنترل كننده دور موتور) بيش از ساير روشها مي باشد و با توجه به اينكه صرفه جوئي ناشي از بالا بودن بازدهي تنها بصورت كاهش هزينه راهبري نمايان مي شود، لذا استفاده از موتورهاي مجهز به كنترل كننده دور در طول زمان منجر به صرفه جوئي اقتصادي مي شود . معمولاً بسته به نوع كاربرد زمان  بازگشت سرمايه گذاري بين يك تا سه سال متغير خواهد بود .

متاسفانه در اكثر موارد مهمترين عامل در انتخاب محرك  قيمت اوليه است. بدين معني كه سيستم بر مبناي كمينه سازي هزينه اوليه انتخاب مي شود. در حاليكه در طول عمر مفيد آن هزينه قابل توجهي صرف انرژي تلف شده و يا تعمير و نگهداري مي شود .

 در شکل(5) میزان استفاده از کنترلرهای دور متغیر نشان داده شده است.


کنترل کننده های دور موتور انواع مختلفی دارند. آنها قادرند انواع موتورهای AC و DC را کنترل کنند. قیمت کنترلرها وابسته به نوع تکنولوژی بکار رفته در ساختمان آنها میباشد. ساده ترین روش کنترل موتورهای AC روش تثبیت نسبت ولتاژ به فرکانس(یا کنترل V/F ثابت) میباشد. اینک این روش، بطور گسترده در کاربردهای صنعتی مورد استفاده قرار میگیرد. این نوع کنترلرها از نوع اسکالر بوده و بصورت حلقه باز با پایداری خوب عمل میکنند. مزیت این روش سادگی سیستمهای کنترلی آن است. در مقابل این نوع کنترلرها برای کاربردهای با پاسخ سریع مناسب نمیباشند.
روبوتها و ماشینهای ابزار نمونه هائی از کاربردهای با دینامیک بالا هستند. در این کاربردها روشهای کنترلی برداری استفاده میشود. در روشهای کنترلی برداری با تفکیک مولفه های جریان استاتور به دو مولفه تورک ساز و فلو ساز، و کنترل آنها با استفاده از رگولاتورهای PI ترتیبی داده میشود که موتور AC  نظیر موتور DC کنترل شود. و بدین ترتیب تمام مزایای موتور DC از جمله پاسخ گشتاور سریع آنها در موتورهای AC نیز در دسترس خواهد بود. برای مثال پاسخ گشتاور در روشهای  برداری حدود 10 – 20ms و در روشهای کنترل مستقیم گشتاور(Direct Torque Control) این زمان حدود 5ms است.  اینک روشهای کنترل برداری متعددی پیاده سازی شده است که بررسی آنها خارج از حوصله این مقاله است. در هر حال نوع کنترلر مطلوب، متناسب با کاربرد انتخاب میگردد. در شکل(6) خلاصه ای از انواع روشهای کنترل موتورهای AC نمایش داده شده است.

شکل(6): خلاصه ای از انواع روشهای کنترل موتورهای AC

10- مزاياي استفاده از كنترل كننده هاي دور موتور
مزاياي استفاده از كنترل كننده هاي دور موتور هم در بهبود بهره وري توليد و هم در صرفه جوئي مصرف انرژي در كاربردهائي نظير فنها ، پمپها، كمپروسورها و ديگر محركه هاي كارخانجات ، در سالهاي اخير كاملا مستند سازي شده است. كنترل كننده هاي دور موتور قادرند مشخصه هاي بار را به مشخصه هاي موتور تطبيق دهند. اين اسباب توان راكتيو ناچيزي از شبكه ميكشند و لذا نيازي به تابلوهاي اصلاح ضريب بار ندارند. در زير به مزاياي استفاده از كنترل دور موتور اشاره ميشود:

  • 1-   در صورت استفاده از كنترل كننده هاي دور موتور بجاي كنترلرهاي مكانيكي، در كنترل جريان سيالات، بطور مؤثري در مصرف انرژي صرفه جوئي حاصل ميشود. اين صرفه جوئي علاوه بر پيامدهاي اقتصادي آن موجب كاهش آلاينده هاي محيطي نيز ميشود.
  • 2-    ويژگي اينكه كنترل كننده هاي دور موتور قادرند موتور را نرم راه اندازي كنند موجب ميشود علاوه بر كاهش تنشهاي الكتريكي روي شبكه ، از شوكهاي مكانيكي به بار نيز جلو گيري شود. اين شوكهاي مكانيكي ميتوانند باعث استهلاك سريع قسمتهاي مكانيكي ، بيرينگها و كوپلينگها، گيربكس و نهايتا قسمتهائي از بار شوند. راه اندازي نرم هزينه هاي نگهداري را كاهش داده و به افزايش عمر مفيد محركه ها و قسمتهاي دوار منجر خواهد شد.
  • 3-   جریان کشیده شده از شبکه در هنگام راه اندازی موتور با استفاده از درایو کمتر از 10% جریان اسمی موتور است.
  • 4-     کنترل کننده های دور موتور نیاز به تابلوهای اصلاح ضریب قدرت ندارند.
  • 5-   در صورتي كه نياز بار ايجاب كند با استفاده از كنترل كننده دور ، موتور ميتواند در سرعتهاي پائين كار كند . كار در سرعتهاي كم منجر به كاهش هزينه هاي تعمير و نگهداشت ادواتي نظير بیرینگها، شيرهاي تنظيم كننده و دمپرها خواهد شد.
  • 6-   يك كنترل كننده دور قادر است رنج تغييرات دور را ، نسبت به ساير روشهاي مكانيكي تغيير دور، بميزان قابل توجهي افزايش دهد. علاوه بر آن از مسائلي چون لرزش و تنشهاي مكانيكي نيز جلو گيري خواهد شد.
  • 7-   كنترل كننده هاي دور مدرن امروزي با مقدورات نرم افزاري قوي خود قادرند راه حلهاي متناسبي براي كاربردهاي مختلف صنعتي ارائه دهند.

11- مديريت بهينه سازي مصرف انرژي و نقش كنترل كننده هاي دور موتور
امروزه در كشورهاي صنعتي الزامات زيست محيطي از يكسو و رقابت بنگاههاي اقتصادي از سوي ديگر ، مديريت بهينه سازي انرژي را در بصورت يك امر غير قابل اجتناب در آورده است. مجموعه اقداماتي كه براي صرفه جوئي انرژي در كارخانجات صورت ميگيرد شامل مواردي چون جايگزيني موتورهاي الكتريكي با انواع موتورهاي با بازدهي بالا، استفاده از كنترل كننده هاي دور موتور در كاربردهائي كه اتلاف انرژي در آنها زياد است، بازيافت انرژي از پروسه هاي حرارتي و نظاير انها ميشود. نتايج اعمال چنين اقداماتي نشان ميدهد در موارد زيادي ، و بخصوص در جاهائي كه از فنها ، پمپها، و كمپروسورها در فرايند توليد استفاده ميشود، بكارگيري كنترل كننده هاي دور موتور  علاوه بر انعطاف پذير نمودن كنترل فرايند، تاثير قابل توجهي در كاهش مصرف انرژي داشته است. در بسياري از موارد زمان بازگشت سرمايه بين يك تا سه سال ميباشد.

کمتر از 10% موتورها مجهز به درایو هستند. در حالیکه در بیش از 25% آنها استفاده از درایو توجیه اقتصادی دارد[16].

بر اساس مطالعات انجام گرفته توسط اتحادیه اروپا [10] تا سال 2005 میلادی پتانسیل صرفه جوئی انرژی بالغ بر 63.5 TWh در صنایع کشورهای عضو اتحادیه اروپا وجود دارد. که از این میزان بیش از 44.7 TWh آن توجیه اقتصادی دارد. این میزان صرفه جوئی انرژی تنها در سایه استفاده از موتورهای با راندمان بالا و درایو بدست میاید. که سهم درایو در صرفه جوئی دارای توجیه اقتصادی حدود 63% است. نتایج چنین مطالعاتی را بطور خلاصه در جدول(3) مشاهده میکنید.

جدول(3): پتانسیل فنی و اقتصادی صرفه جوئی انرژی با استفاده از موتورهای با راندمان بالا(EEM) و کنترل دور(VSD) در کشورهای عضو اتحادیه اروپا تا سال 2005.

مطالعه فوق با تفکیک بار پتانسیل اقتصادی صرفه جوئی انرژی را نیز در اتحادیه اروپا مشخص نموده است. که نتایج آنرا در شکل(7)  مشاهده میکنید.


شکل(7): پتانسیل صرفه جوئی اقتصادی درکشورهای عضو اتحادیه اروپا به تفکیک نوع بار

12- پمپها و فنها
چيزي حدود 40 درصد انرژي مصرفي در بخش صنعت در پمپها و فنها مصرف ميشود. برای مثال در انگلستان ترکیب مصرف کنندگان انرژی در موتورها و در کاربردهای صنعتی بصورت زیر است[15].


شکل(8): میزان انرژی مصرفی توسط بارهای مختلف در انگلستان

اغلب اين سيستمها از موتورهاي القائي با روتور قفس سنجابي استفاده ميكنند. و  خروجي توسط ادواتي چون شيرهاي تنظيم كننده و دمپرها كنترل ميشوند. متاسفانه مقادير قابل توجهي انرژي توسط اين فنها و پمپها تلف ميشوند.  موتورهاي بكار رفته در اغلب اين ادوات از مقدار مورد نياز بزرگتر بوده و سيستمهاي مكانيكي تنظيم كننده جريان سيالات در آنها بسيار تلفاتي ميباشند. به اين عوامل بايد هزينه هاي قابل توجه تعمير و نگهداشت نيز اضافه شود. با توجه به اینکه هزینه های خرید پمپ معمولا کمتر از 5 درصد هزینه های بهره برداری آن در طول عمر سیستم پمپ است، کیفیت بهره برداری عامل مهمتری در تصمیم گیری برای انتخاب سیستمهای پمپ بشمار میرود.

شکل(9): مقایسه انرژی مصرفی کنترل فلو با شیر و درایو

انتخاب پمپ ها معمولا بر اساس حداکثر دبی مورد انتظار صورت میگیرد. در حالیکه اغلب اوقات هرگز فلوی ماکزیمم مورد استفاده قرار نمیگیرد. این امر منجر به بزرگ شدن پمپ ها شده و بدین ترتیب مقدمات کار برای اتلاف انرژی و استهلاک هر چه سریعتر سیستم های پمپ فراهم میشود. اگر یک پمپ در دور نامی خود کار کند و دبی خروجی پمپ به مصرف برسد سیستم در راندمان مطلوب خود کار خواهد کرد. اما اگر تنها 50 درصد دبی حداکثر مورد نیاز باشد چه اتفاقی خواهد افتاد؟ بدیهی است که در این حالت نیز موتور در دور نامی خود کار خواهد کرد و توان مصرفی اضافی توسط موتور تلف خواهد شد. از سوی دیگر برای کنترل دبی خروجی لازم خواهد بود از ادوات مقاومتی نظیر شیر خفه کن استفاده گردد. با استفاده از كنترل كننده هاي دور موتور ميتوان جريان سيالات در پمپ ها را با اعمال تغيير دور موتور ، كنترل نمود. امروزه اين روش بدليل انعطاف پذيري و صرفه جوئي اقتصادي قابل توجه جايگزين روشهاي سنتي متكي بر تنظيم جريان سيال با استفاده از شيرهاي تنظيم كننده مكانيكي و دمپرها ميشود.  در شکل(9) تفاوت دو روش در میزان مصرف انرژی نشان داده شده است.

13- قوانین افینیتی در کاربردهای پمپ و فن

قوانین افینیتی در کاربردهای پمپ و فن های سانتریفوژ پایه نظری صرفه جوئی انرژی با استفاده از درایو هستند. بر طبق این قوانین و در یک پمپ یا فن سانتریفوژ، روابط زیر حاکم است:

                                    Q ~ N                           فلو یا حجم : Q   ,   سرعت  : N

                                    H ~ N2                          هد یا فشار   : H 

                                    P ~ N3                            توان ورودی : P

با توجه به شکل(10) فلو/ ولوم بصورت خطی با دور پمپ/فن تغییر میکند. برای مثال اگر دور موتور نصف شود فلو نیز نصف خواهد شد. از طرف دیگر با توجه به منحنی وسط فشار یا هد متناسب با مربع دور تغییر میکند. در این حالت اگر دور موتور نصف شود، فشار یا هد چهار برابر کاهش پیدا کرده و به 25% خواهد رسید. منحنی سمت راست نشان میدهد که اگر دور موتور نصف شود مصرف توان 8 برابر کاهش پیدا کرده و به 12.5% خواهد رسید

شکل(10): نمایش تصویری قوانین افینیتی در کاربردهای پمپ و فن سانتریفوژ

به خاطر میسپاریم با استفاده از كنترل كننده هاي دور موتور و كاهش تنها 15 درصد دور ميتوان به ميزان 40  درصد در مصرف انرژي صرفه جوئي كرد. حال اجازه بدهید کمی دقیقتر به رفتار یک پمپ توجه کنیم. شکل(11) مشخصات یک سیستم پمپ را نشان میدهد. هد استاتيك عبارتست از اختلاف ارتفاع پمپ و تانك مقصد.  بديهي است كه اگر يك پمپ نتواند به اين ارتفاع غلبه كند دبي خروجي صفر خواهد بود. مولفه دوم هد اصطکاکی است . که در واقع بیانگر توان مورد نیاز جهت غلبه بر تلفات ناشی از عبور سیال از لوله ها، شیرها، زانوها و دیگر اجزای سیستم لوله کشی میباشد. این تلفات کلا وابسته به سرعت عبور سیال بوده و غیر خطی است. با اضافه کردن دو منحنی، منحنی سیستم بدست میاید.

در شکل(12) منحنی های سیستم و منحنی پمپ باهم نشان داده شده است. نقطه كار يك پمپ محل تلاقي منحني پمپ و منحني سيستم مي باشد. با توجه به این منحنی ها روشن میشود که میزان فلو در این سیستم 800 لیتر در ثانیه و هد 60 متر میباشد. اگر بخواهیم نقطه کار را تغییر بدهیم لازم خواهد بود چیزی به سیستم اضافه نمائیم.

 یک روش متداول در اینجا استفاده از شیر خفه کن است. در شکل(13) تاثیر عملکرد شیر خفه کن در نقطه کار پمپ را مشاهده میکنید. در واقع شیر اصطکاک مسیر سیال را افزایش داده و باعث افت فلو میگردد. با وجود اینکه با حضور شیر فلو  به 600 لیتر در ثانیه کاهش پیدا کرده ولی در توان مصرفی سیستم تغییر محسوسی ایجاد نشده است. حال نگاهی دقیقتر به موضوع خواهیم داشت. همانطور که در شکل(14) مشاهده میکنید، برای دستیابی به فلوی مورد نظر از دو روش کنترل فلو با استفاده اشیر و کنترل با استفاده از درایو استفاده شده است . در روش کنترل فلو با شیر میزان توان مصرفی 0.875 درصد و در کنترل فلو با درایو توان مصرفی 0.42 درصد توان نامی میباشد. برای مثال اگر توان نامی پمپ 100KW باشد. تفاوت توان مصرفی دو روش برابر خواهد بود با:

(100KW x 0.875) – (100KW x 0.42) =  45.5KW

شکل(14) مقایسه توان مصرفی یک سیستم پمپ در دو حالت: الف) کنترل فلو با استفاده از شیر خفه کن (شکل سمت چپ) . ب) کنترل فلو با استفاده از درایو (شکل سمت راست).

شكل (15) - ميزان مصرف انرژي در يك پمپ در پنج حالت : با استفاده از شیر برگشتی، با استفاده از شیر خفه کن،  با قطع و وصل پمپ، با استفاده از کوپلینگ هیدرولیک، با استفاده از كنترل كننده دور موتور

هر چند كه در سيستمهائي كه هد استاتيك بالا ئي دارند با تغيير دور،  راندمان پمپ هم به ميزان زيادي تغيير ميكند، ولي مزاياي ديگر درايو استفاده از آن را بخوبي توجيه ميكند. براي مثال ميزان فشار هيدروليك وارد شده به پره هاي پمپ سانتريفوژ با مجذور سرعت افزايش مييابد. اين نيروها به بيرينگهاي پمپ اعمال شده و عمر مفيد آنها را كاهش خواهد داد. خاطر نشان ميشود كه عمر بيرينگها بطور معكوس با توان هفتم سرعت متناسب است. از سوي ديگر با كاهش دور نويز و نوسانات سيستم نيز كاهش پيدا ميكند.

درشكل (15)  ميزان مصرف انرژي در يك پمپ در پنج حالت : با استفاده از شیر برگشتی، با استفاده از شیر خفه کن،  با قطع و وصل پمپ، با استفاده از کوپلینگ هیدرولیک، و با استفاده از كنترل كننده دور موتور نمایش داده شده است. با توجه به این شكل تاثير قابل توجه كنترل كننده دور موتور در كاهش انرژي مصرفي ، نسبت به روشها، مشاهده ميشود. در روش شیر برگشتی متناسب با نیاز مقداری از دبی خروجی پمپ به وروی آن عودت داده میشود. بدیهی است که در این حالت توان مصرفی برای هر دبی خروجی ثابت خواهد بود.

امروزه در كشورهاي پيشرفته بعنوان يك برخورد اوليه در كاهش سريع مصرف انرژي، مجهز نمودن اين نوع فنها و پمپها به درايو ميباشد.

نكاتي كه بايد در طراحي سيستمهاي پمپ مورد توجه قرار گيرند عبارتند از:

            - سيستم را بزرگ انتخاب نكنيد. حتي اگر بعدها نياز به توسعه پيدا كرديد. باز مطلوب آن است كه بعدا كنار سيستم موجود پمپ بيشتري اضافه كنيد

            - توجه كنيد كه هزينه هاي خريد پمپ در مقايسه با هزينه هاي انرژي آن در طول عمر پمپ ناچيز است. پس پمپهاي با راندمان بالا را استفاده كنيد.

            - از درايو براي كنترل فلو استفاده كنيد

            - بجاي استفاده از يك پمپ بزرگ از تعدادي پمپ كوچك بطوريكه مجموع آنها ظرفيت مورد نياز را تامين نمايد، استفاده كيد. بدين ترتيب ميتوانيد در صورت عدم نياز به ظرفيت اضافي آن را از مدار خارج كنيد.

14-  مثال از محاسبات صرفه جوئي انرژي در فن

براي روشن شدن تاثير استفاده از درايو در كاربرد فن به مثال زير توجه ميكنيم. نخست اشاره ميكنيم به قوانين حاكم بر فن كه موسوم به قوانين افينيتي (Affinity Laws ) ميباشد:

Eq. 1:   (N1 / N2)   =  Q1 / Q2

Eq. 2:   (N1 / N2)2  =  P1 / P2

Eq. 3:   (N1 / N2)2  =  T1 / T2

Eq. 4:   (N1 / N2)3  =  HP1 / HP2

در معادلات فوق N معرف سرعت،  Q معرف ميزان جريان سيال، T معرف گشتاور، HP معرف توان مصرفي و P معرف فشار است.

حال فرض ميكنيم يك فن با موتور 250hp با راندمان 95% موجود است. و سيكل كار آن را در هر هفته بصورت زير در نظر ميگيريم:

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:26  توسط 66  | 

 

ادامه از کاربرد کنترل کننده های دور موتور در صرفه جویی انرژی(1)



بدون استفاده از درايوميزان انرژي مصرفي در هر هفته برابر است با:

با استفاده از درايوميزان انرژي مصرفي در هر هفته برابر است با:

ميزان صرفه جوئي انرژي در سال برابر است با:

و اگر ارزش هر كيلووات ساعت انرژي را 4 سنت در نظر بگيريم ارزش انرژي صرفه جوئي شده برابر خواهد بود با:

 

 

15- یک مطالعه موردی در ایران:

 گزارشی از وضعیت فعلی فنهای پیش گرمکن خط 2 سیمان آبیک و بررسی امکان صرفه جوئی انرژی در آنها

گزارش زیر توسط مرکز تحقیقات سیمان آبیک آماده شده است:

فنها در صنعت سیمان کاربرد گسترده ای دارند. و برای انتقال گازهای ناشی از فرایند تولید سیمان و یا انتقال مواد از آنها استفاده میشود. از آنجائی که شرائط فرایندی با توجه به تغییرات پارامترهای آن ثابت نمی باشد. در نتیجه میزان تولید گازهای فرایندی با توجه به تغییرات پارامترهای آن ثابت نمی باشد. در نتیجه میزان تولید گازهای فرایندی نیز متغیر بوده و لازم ست این امر با تغییر هوادهی فنها تحت کنترل باشد. از متداول ترین روشهای کنترلی که برای فلوی گاز در فن ها تا بحال مورد استفاده قرار گرفته است، کنترل فلو توسط دریچه در ورودی فن میباشد. اگر چه این روش، طریقه ای موثر در کنترل فلو بوده اما در مصرف انرژی تاثیر قابل ملاحظه ای نداشته است. در صورتی که کنترل فلوی گاز با استفاده از کنترل دور فن، علاوه بر کارائی بهتر بمیزان زیادی در مصرف انرژی الکتریکی فن صرفه جوئی انرژی ایجاد خواهد کرد.

بعنوان مطالعه موردی فن های پیش گرمکن واحد 2 سیمان آبیک مورد بررسی قرار میگیرد. بمنظور آنکه بتوان میزان بالقوه انرژی قابل صرفه جوئی در این فن ها بدست اید از دو روش:

  1- محاسبه توان با استفاده از پارامترهای بدست آمده از فرایند

  2- اندازه گیری توان موتور درایو

استفاده کرده و یک بررسی مقایسه ای بین ایندو بعمل می آ وریم. برای محاسبه توان از رابطه معمول آن:

استفاده کرده ایم. پارامترهای مورد نیاز برای محاسبه نیز در فرایند و در شرائط نرمال بهره وری اندازه گیری شد.

Q = 327,000  m3/h  فلوی گاز

  P1= -560 mm WG  فشار هوا قبل از دریچه(شرائط فرایند)

  Pl1= -1100 mm WG  فشار هوا بعد از دریچه و قبل از فن

  P2 = - 10 mm WG  فشار هوا بعد از دریچه(شرائط فرایند)

وضعیت دریچه 22% و دور موتور برابر با دور نامی 990RPM ،  و توان نامی موتور فن 1300KW با راندمان 0.8 بود. در این شرائط میزان توان مصرفی فن با استفاده از پارامترهای بهره برداری و با توجه به P فرایند :

و با استفاده از P فن، یعنی تفاوت فشار ورودی و خروجی فن، توان مصرفی عبارت است از :

و مقدار خوانده شده توسط دستگاه واتمتر برای هر دو فن شماره 35 و 36 (فن های پیش گرمکن ) بصورت زیر بود: 

  P35 = 1260 KW

  P36 = 1210 KW

مقایسه دو مقدار توان فن( محاسبه شده و اندازه گیری شده) حداقل دو مسئله را روشن میکند:

1-  صحت محاسبات انجام شده( عدد 1213 در مقابل 1260 و یا 1210 ).

2-  استفاده از دریچه باعث افزایش P فن شده و این امر باعث افزایش توان مصرفی فن شده است.

مورد فوق بخوبی نشان میدهد که حذف دریچه ورودی و استفاده از کنترل دور میتواند شرائط کار فن را به شرائط فرایند نزدیکتر کرده و در آنصورت در مصرف انرژی فن کاهش قابل ملاحظه ای مشاهده خواهد شد. نهایتا بر روی فن شماره 36 کنترل دور نصب شد و در حالیکه دور فن روی 680RPM تنظیم شده بود شرائط فرایندی مشابه با حالت بدون کنترل دور فراهم شده و تولید نیز به حالت نرمال رسید.

در این حالت  شرائط دریچه 100% باز و مقدار توان مصرفی موتور 560KW قرائت گردید. همانگونه که انتظار داشتیم با استفاده از کنترل دور توانستیم توان فن را به شرائط بهره برداری قبل رسانده و توان مصرفی را بمیزان زیاد کاهش دهیم. انتظار میرود با توجه به میزان سرمایه گذاری انجام شده جهت تهیه کنترل دور مورد نیاز، زمان بازگشت سرمایه 3 سال باشد.

16- سيتمهاي تهويه مطبوع

موضوع صرفه جوئي انرژي در دنياي رقابتي امروز حتي آثار خود را در سيستمهاي تهويه مطبوع هتلها نيز خود را مطرح كرده است. در اين مكانها امكان صرفه جوئي انرژي تا مرز 50 درصد روي سيستمهاي HVAC  يا  سيستمهاي حرارتي و هواسازي و تهويه مطبوع ، وجود دارد. و سرمايه گذاري اوليه در مدت دو سال از محل صرفه جوئي انرژي قابل بازيابي ميباشد.

17- ماشين تزريق پلاستيك

در يك ماشين تزريق پلاستيك استفاده از كنترل كننده دور موتور ميتواند تا 50 در صد صرفه جوئي در مصرف انرژي بدنبال داشته باشد[2]. براي روشن شدن اين مطلب به دياگرام زير توجه ميكنيم:


شكل (16) مصرف انرژي در يك سيكل كاري ماشين تزريق پلاستيك- بدون استفاده از درايو

در دياگرام فوق مصرف انرژي در يك سيكل كاري نشان داده شده است. اين حالت نرمال كار ماشين بوده و در اين وضعيت از درايو استفاده نشده است. با استفاده از كنترل كننده دور موتور ميتوان توان تلفاتي ماشين را بميزان قابل توجهي كاهش داد. مضافا اينكه در اين صورت ماشين خيلي نرمتر كار كرده و از شوكهاي مكانيكي اجتناب خواهد شد. خود اين امر منجر به كاهش هزينه هاي تعمير و نگهداشت ماشين ميشود . در دياگرام زير توان مصرفي ماشين در حالت كار با كنترل كننده دور موتور نمايش داده شده است:


شكل (17) مصرف انرژي در يك سيكل كاري ماشين تزريق پلاستيك- با استفاده از درايو

با مقايسه دو دياگرام مشاهده ميشود كه مصرف انرژي  از 42 كيلوات ساعت به 27 كيلووات ساعت تقليل پيدا كرده است.

18- صرفه جوئی انرژی در تاسیسات آب و فاضلاب

شرکت Vacon سازنده درایوهای AC گزارش کرده است [12] که درسیستم تصفیه فاضلاب شهر گرومز سوئد با استفاده از درایو 40.5% صرفه جوئی انرژی بدست آوده است. این درحالی است که در سیستم فوق و با استفاده از درایو  مصرف مواد شیمیائی نیز 53% کاهش پیدا کرده است. اینک شرکت Vacon را ه حلهای جامعی در تاسیسات آب و فاضلاب ارائه میدهد. این راه حلها شامل طراحی این تاسیسات، انتخاب درایو، و محاسبات صرفه جوئی انرژی میشود [13]. برای اطلاعات بیشتر در این زمینه با شرکت پرتوصنعت تماس بگیرید.

19- کمپرسورها

شرکت اطلس کوپکو موفق شده است با استفاده از درایو مصرف انرژی کمپروسورهای تولیدی خود را بمیزان 35% کاهش دهد. در کنار این دستاورد مهم اطلس کوپکو توانسته است با استفاده از درایو فشار کمپروسور را با دقت و پایداری بیشتری کنترل کند، جریان راه اندازی را محدود نماید و ضریب قدرت را به بیش از 95% برساند. و بدین ترتیب این کمپروسورها نیازی با خازنهای اصلاح ضریب قدرت ندارند. از سال 1994 ببعد که اطلس کوپکو این کمپروسورها را معرفی کرده است توانسته است بازار کمپروسورهای دنیا را تسخیر کند. این رویکرد سیستمی در طراحی و ارائه محصول با کیفیت،  نمونه خوبی از افزایش مزیت رقابتی یک بنگاه اقتصادی میباشد.

20- نیروگاهها

در نیروگاهها پتانسیل قابل توجهی برای صرفه جوئی انرژی وجود دارد. مصرف داخلی نیروگاههای بخاری میتواند بین 5 تا 14 درصد انرژی تولید شده توسط نیروگاه باشد. این میزان انرژی عمدتا در ID فن، FD فن، فید پمپ، فنهای کولینگ تاورف پمپهای سیرکولاسیون و خنک کن مصرف میشود. یک مطالعه موردی از نیروگاههای هند نشان میدهد[14] که از مجموع 22 واحد نیروگاهی 210 مگاواتی، با بکارگیری درایو در فنهای ID و یا پمپهای BFP ، سالانه بالغ بر 158 میلیون کیلووات ساعت انرژی، به ارزش 11.3 میلیون دلار صرفه جوئی انرژی حاصل میگردد. این در حالی است که ارزش سرمایه گذاری ولیه 7/25 میلیون دلار بوده است. و بدین ترتیب میتوان انتضار داشت که در کمتر از 3/2 سال سرمایه گذاری اولیه مستهلک شده و عواید سرشاری نصیب نیروگاهها گردد. در جدول(4) خلاصه ای از این بررسی را مشاهده میکنید.

جدول(4): بررسی نتایج استفاده از درایو در برخی از کاربردهای با مصرف انرژی بالا بمنظور کاهش مصرف داخلی نیروگاهها در کشور هند

21- سیمان

در ایران حدود 9% انرژی الکتریکی صنعتی در صنایع سیمان مصرف میشود. مطالعاتی که در سال 2002  توسط آقای علیرضا شیرازی در صنایع سیمان انجام گرفت نشان داد[12] که میزان مصرف انرژی در این صنایع نسبت به استانداردهای جهانی آن خیلی بالا است. در شکل(18) شدت انرژی الکتریکی مورد نیاز در صنایع سیمان ایران برای تولید هر تن سیمان با بهترین حالت جهانی آن نشان داده شده است. و در جدول  ) 5( خلاصه ای از این مطالعه نشان داده شده است.

شکل(18): پتانسيل صرفه جوئي در مصرف انرژي الكتريكي در صنايع سيمان ايران در مقايسه با بهترین حالت جهاني آن (Kwh/Ton)

جدول (5ب) پتانسيل صرفه جوئي سالانه انرژي الكتريكي در صنايع منتخب سیمان ایران در مقايسه با استاندارد جهاني

اطلاعات فوق نشان مي‌دهد كه در هر كارخانه سيمان مي توان حدود 1.5 ميليون دلار در هر سال در مصرف انرژي الكتريكي صرفه‌جوئي نمود و اگر تعداد خطوط توليد سيمان را در حال حاضر 60 خط توليد در نظر بگيريم ميزان مصرف انرژي الكتريكي در صنايع سيمان سالانه بالغ بر 90 ميليون دلار خواهد بود . براي بدست آوردن اين نتايج ارزش هر كيلووات ساعت انرژي الكتريكي 6 سنت در نظر گرفته شده است. هر جند که این مقدار صرفه جوئی انرژی تنها با استفاده از درایو بدست نمی آید ولی استفاده از درایو سهم عمده ای در این صرفه جوئی خواهد داشت.

22- قابليتهاي كنترل كننده هاي دور موتور مدرن

درايوهاي مدرن امروزي بر اساس تكنولوژي مدولار ساخته ميشوند. اين امر هم در قسمتهاي سخت افزاري و هم در قسمتهاي نرم افزاري درايو رعايت ميشود. ساختار مدولار قابليت بر آورده سازي بسياري از نيازهاي مشتري را دارد. اغلب اين درايوها از تكنولوژي كنترل برداري بهره ميگيرند. اين روش كنترل امكان كنترل موتور را با دقت و ديناميك زياد فراهم مياورد. بطوريكه اين درايوها اينك قادرند درست نظير درايوهاي DC رفتار نمايند. آنها را ميتوان در كاربردهاي كنترل سرعت و يا كنترل گشتاور بسهولت مورد استفاده قرارداد. بطوريكه سادگي  و استحكام موتورهاي القائي دركنار اين درايوها مجموعه اي مطمئن و كارا از آنها ميسازد . هر چند كه اين درايوها از تكنولوژي الكترونيك قدرت پيچيده  استفاده ميكنند اما بدليل استاتيك بودنشان هزينه هاي نگهداشت زيادي به صنعت تحميل نمي كنند.

درایوهای مدرن قادرند بطور اتوماتیک فلو ی مغناطیسی در موتور را در سطح بهینه ان نگهدارند. این ویژگی در جاهائی که بار موتور کم است منجر به صرفه جوئی انرژی خواهد شد.

درايوهاي مدرن امروزه در كاربردهاي فيدبك و سرو نيز بسهولت بكار گرفته ميشوند. ساختار مدولار آنها بگونه اي است كه ميتوان متناسب با كاربرد از كارتهاي اختياري استفاده نمود. اين كارتها امكان تطبيق درايو با كاربرد مشتري را فراهم مي آورند. در كنار اين مقدورات سخت افزاري بايد به برنامه هاي نرم افزاري متعددي نيز اشاره نمود، كه معمولات توسط سازندگان درايو براي نيازهاي مختلف صنعتي ارائه ميشود. استفاده از اين برنامه هاي كاربردي بسيار ساده بوده و كاربر ميتواند برنامه دلخواه خود را انتخاب و در داخل درايو قراردهد. درايوهاي امروزي ميتوانند بسياري از فيلد باسهاي موجود را پشتيباني كنند. امروزه پروفي باس به عنوان يك فيلدباس باز( Open ) ، در بسياري از كاربردهاي صنعتي متداول شده است. سازندگان درايو با استفاده از پروفايل Profi Drive بسهولت سازگاري خود را با پروفي باس برقرار ميسازند.

درایوها علاوه بر ماموریتهای اصلی خود قابلیتهای بیشمار دیگری نیز دارند که از جمله میتوان به موارد زیر اشاره نمود:

-  حفاظت کامل الکتروموتور در مقابل اضافه جریان و نوسانات ولتاژ

-  انعطاف پذیری در کنترل پروسه

-  سازگاری با نیازهای کاربردی موتور

سیستم نرم افزاری درایوهای ساخت شرکت Vacon  از دو لایه تشکیل شده است. لایه اول نرم افزار سیستم و لایه دوم جهت توسعه نرم افزارهای کاربردی کاربر اختصاص یافته است. با کمک این لایه کاربر میتواند با کمک ابزار گرافیکی و با استفاده از زبانهای رایج برنامه نویسی برنامه های کاربردی خود را توسعه دهد. وکن تنها به همین اکتفا نکرده و با آماده نمودن صدها برنامه کاربردی به کاربر کمک میکند بسهولت برنامه کاربردی مورد نظر را در درایو نصب نموده و از آنها استفاده نماید. بعنوان نمونه میتوان به نرم افزارهای کاربردی زیر اشاره نمود:

22-1-  نرم افزار کاربردی کنترل پمپ و فن

همانطور که از نام آن پیداست، این برنامه کاربردی جهت کنترل یک یا چند فن یا پمپ بکار میرود. این نرم افزار بطور اتوماتیک متناسب با فلوی مورد نظر یک یا چند پمپ را روشن کرده و فلو را کنترل میکند. برنامه بطور اتوماتیک تمام پمپ ها را در پریود زمانی مشخص بکار میگیرد.

22-2-  نرم افزار کاربردی کنترل سطح پیشرفته

این نرم افزار کاربردی جهت کنترل دقیق سطح سیال در مخازن بکار میرود. این نرم افزار نیز بطور اتوماتیک تعدادی پمپ را مدیریت میکند.

22-3-  نرم افزار کنترلی Master Follower

این برنامه قادر است تورک مورد نیاز بار را در تعدادی موتور تسهیم نماید. این موتورها متفقا یک بار را درایو میکنند. و این برنامه ناظر به هماهنگی دقیق آنها در تامین گشتاور مورد نیاز بار است

23- درايوهاي دور متغير VACON مصداقي از درايوهاي مدرن

كنترل كننده هاي دور موتور ساخت شركت وكن نمونه كاملي از درايوهاي مدرن امروزي است[3]. درايوهاي وكن داراي ساختاري كاملا مدولار بوده و به كاربر اجازه ميدهد با استفاده از نرم افزار قدرتمند داخلی، که بر اساس استاندارد IEC 611131-3کار میکند،  برنامه هاي خود را توسعه دهد. بدين ترتيب اين درايو قادر است در كاربردهاي زيادي نقش يك PLC را نيز بازي كرده و به كاربر اجازه ميدهد بسهولت براي كاربردهاي خود راه حل ارائه دهد. علاوه بر اين قابليت، شركت وكن در اقدامي بي سابقه با طراحي و توسعه صدها برنامه كاربردي مختلف براي كاربردهاي صنعتي، بهره برداری ار درایوهای خود را کاملا منعطف نموده است. اينها بخشي از ويژگيهاي منحصر بفردي است كه  درايوهاي وكن را تبديل به  نمادي از درايو حرفه اي براي هزاره جديد نموده است. توصيه ميكنيم  براي آشنائي بيشتر با اين درايوهاي قدرتمند با شركت پرتو صنعت تماس بگيريد.

24- مسائلي كه درايوهاي دور متغير بوجود مياورند.

هر چند كه درايوها مزاياي زيادي دراند ولي در انتخاب و بكارگيري آنها بايد دقت كافي به عمل آيد. خصوصا اگر درايوهاي مورد بحث توانهاي بالائي داشته و توليد كارخانه به عملكرد آنها كاملا مرتبط باشد. در واقع تحقيقات نشان داده است كه نگراني از ضريب اطمينان درايو بعنوان يكي از موانع اصلي در عدم رغبت صنايع به استفاده از آنها در صرفه جوئي انرژي ميباشد[10] .

درايوهاي ولتاژ متوسط (Medium Voltage Drives) از تكنولوژي ساخت پيچيده اي برخوردارند. اينها معمولا تركيبي از الكترونيك قدرت، كنترل، ميكروكامپيوترها، ترانسفورماتورها و فيلترها ميباشند. پر واضح است كه ارزيابي اين اجزا و انتخاب درايو نهائي امري دشوار و نيازمند زمان و بسيج كارشناسان متخصص خواهد بود. با این حال چهارچوب ساده زیر میتواند خریداران درایو را در ارزیابی و انتخاب درایو مورد نظرشان یاری دهد. در اين چهارچوب پيچيدگيهاي داخلي درايو مورد توجه قرار نميگيرد. بلكه سعي ميشود از آثار جانبي درايو عملكرد آن مورد ارزيابي قرارگيرد. بر این اساس مطابق شکل(19) مسائل جانبی درایو را طبقه بندی نموده و ملاکهائی برای ارزیابی آنها تعیین میکنیم.

شکل(19): چهارچوب پیشنهادی برای ارزیابی درایوهای ولتاژ متوسط با توجه به آثار جانبی آنها

ملاك اول تضمين ميكند كه شبكه برق كارخانه تحت تاثير عملكرد درايو قرار نگيرد. اين موضوع وقتي اهميت بيشتر پيدا ميكند كه توان درايوهاي مورد بحث زياد بالا باشد. اعوجاجهاي ناشي از عملكرد درايو روي شبكه ميتواند عملكرد ساير دستگاههاي حساس كنترلي را مختل سازد، تداخل در خطوط مخابراتي كارخانه ايجاد نمايد، و يا توان راكتيو از شبكه كشيده شود. و واكنش سازمانهاي برق منطقه اي را بدنبال داشته باشد. خلاصه اي از روشهاي مختلف جهت كاهش هارمونيكهاي ناشي از عملكرد بارهاي غير خطي و از جمله درايو در جدول(6) آمده است.

    میزان تاثیر روی THID تاثیر روی هارمونیکها ملاحظات سازگاری با IEEE519
راکتور AC یا DC   29%-45%

 

مرتبه پائین

 

- کمترین قیمت

- راکتورهای AC حالات گذرای ورودی را محدود میکنند

- مسئله افت ولتاژ روی چک  
خیر
           
ترانسفورماتور ایزوله   45%   - کم قیمت خیر
           
فیلترهای غیر فعال

Trap

Tuned 
20% مورد نظر

- قیمت متوسط

- کاستن از آستانه تحریک

سیستم

 

 
 

Broadband

Low pass 
5% مورد نظر

- خیلی گران

- کاستن از آستانه تحریک سیستم

- کاهش پایداری سیستم 
بله بصورت محدود
           
دیوایس اکتیو VFD با ورودی اکتیو   مرتبه پائین

- گران

- ضرب قدرت را بهبود میدهد

- از IGBT استاندارد استفاده می کند
بله
  فیلتر اکتیو   مرتبه پائین

- گران

- MTBF کم

- افزایش هارمونیکهای مرتبه بالا

- ضرب قدرت را بهبود میدهد 
بله
           
سیستمهای چند پالسه: 12,18,24 12 پالسه 24%  

- قیمت متوسط

- حساس به عدم تقارن جریان 
خیر
  18 پالسه 5%>  

- بالاترین MTBF

- مقاوم در برابر شرائط گذرا

- حساس به عدم تقارن جریان 
بله

جدول(6): روشهای کاهش هارمونیکهای ناشی از عملکرد  کنترل کننده های دور موتور

توصيه ميشود استانداردهاي IEEE519 در درايوهاي ولتاژ متوسط يا Medium Voltage Drives رعايت شود. بطور خلاصه اين استاندارد ملزم ميكند كه توتال هارمونيك ولتاژ در شبكه كمتر از 5% و توتال هارمونيك جريان كمتر از 3% باشد. همچنين لازم است ضريب قدرت درايو در تمام رنج تغييرات دور بالاي 95% باشد.

ملاك دوم تضمين ميكند كه برق خروجي از درايو تنشهاي ولتاژ و جريان اضافي به موتور تحميل نخواهد كرد. تنشهاي ولتاژ ميتواند عايق موتور را تحت فشار قراردهد. از سوي ديگر جريانهاي هارمونيكي ميتوانند باعث نوسانات گشتاور در موتور و بار بشوند. اعوجاج در ولتاژ و جريان موتور ميتواند باعث القاي جريانهاي مخرب در بيرينگهاي موتور شده و فرسايش سريع آن را بدنبال داشته باشد. مضافا اينكه جريانهاي هارمونيكي در موتور منجر به ايجاد حرارت اضافي در موتور خواهد شد. در شكل(20) شکل موجهای ولتاژ خروجي يك درايو نمونه را ميتوانيد مشاهده كنيد. در شکل موج بالا ولتاژ خروجی در ترمینالهای درایو، و شکل موج پائین ولتاژ ورودی در ترمینالهای موتور را مشاهده میکنید. دامنه اسپايكهاي ولتاژ حدود 1500 ولت است. اين اسپايكها ميتوانند عايق موتور را تحت فشار قرار دهند.

شکل(20): شکل موج خروجی از یک درایو و اسپایکهای ناشی از عملکرد سوئیچهای قدرت و خازنهای پراکندگی سیستم:

 شکل موج بالا شکل موج خروجی درایو. شکل موج پائین شکل موج ورودی موتور

يك معيار خوب براي كيفيت توان خروجي درايو را ميتوان محدوديت طول كابل موتور به درايو قرار داد. اغلب سازندگان درايو محدوديت هاي زيادي در طول كابل درايو به موتور اعمال ميكنند. آنها ميگويند اگر طول كابل مثلا از 100 متر بيشتر باشد لازم است از فيلتر براي سازگاري درايو به موتور استفاده گردد. از اين رو براي حصول اطمينان از كيفيت توان خروجي درايو به سه معيار زير توجه ميكنيم:

-  طول كابل خروجي از درايو به موتور نبايد از سوي سازنده درايو محدود گردد.

-  حتي الامكان در خروجي درايو ضرورتي براي استفاده از فيلتر نباشد.

-  درايو بايد سازگار با هر نوع موتور استاندارد موجود بوده و نيازي به كار مهندسي جهت تطبيق درايو به موتور نباشد.

ملاك سوم تضمين ميكند كه درايو حداقل تاثير را روي بار و كوپلينگها داشته باشد. نوسانات گشتاور باعث استهلاك سريعتر بار و كوپلينگها ميشود. اينها آستانه تحريك سيستم را نيز پائين مياورند. ضمنا درايو بايد بتواند گشتاور مورد نياز بار را در تمام سرعتها تامين نمايد. توصيه ميشود ميزان نوسانات گشتاور يا Torque Pulsation در خروجي درايو كمتر از 0.5% در رنج تغييرات دور باشد.

ملاك چهارم تضمين ميكند كه درايو با هزينه كمتر كار خود را انجام بدهد و خود عاملي براي وقفه در توليد نگردد. همچنين درايو فانكشنهاي ساده اي داشته و بسهولت قابل سرويس باشد. و از پشتيباني فني مطمئن و سريع برخوردار باشد.

ملاك پنجم ميتواند از اين لحاظ مورد توجه قرار گيرد كه احتمال آن را بدهيم كه مشتريان ديگري كه از درايو مشابه استفاده ميكنند، در انتخاب و بكار گيري درايوهايشان بررسي هاي كافي كرده اند.

25- درايوهاي ولتاژ متوسط Perfect Harmony

در سال 1994 شرکت ASIRobicon با معرفی درایوهای ولتاژ متوسط Perfect Harmony مشکلات بر شمرده در بالا را حل نمود. با معرفی درایوهای Perfect Harmony نگرانیهای صنایع از مسائل این نوع درایوها، نظیر هارمونیکها، ضریب اطمینان و کیفیت توان بتدریج بر طرف شد. بطوریکه اینک بیش از 3000 دستگاه از این نوع درایوها در صنایع و کاربردهای کلیدی بکار گرفته شده است. در جدول (7)  خلاصه ای از ویژگیهای منحصر بفرد این درایوها آمده است.

جدول(7): برخی از مشخصات پیشرفته درایوهای Perfect Harmony

 توصیه ها

1- در بهینه سازی مصرف انرژی بجای یک یا چند موتور کل سیستم را در نظر بگیرید. در این نوع بررسی ها لازم است تاثیر اقدامات مورد نظر روی سایر سیستمها از جمله بهره برداری و تعمیر ونگهداشت بدقت مورد توجه قرار گیرد.

2- در هنگام تصمیم گیری در خرید موتور کل هزینه های چرخه عمر سیستم مورد نظر را مورد توجه قرار دهید. بیاد داشته باشید که معمولا هزینه اولیه خرید یک موتور، نسبت به هزینه های انرژی و تعمیر و نگهداشت آن در طول عمر مفید سیستم ناچیز است.

3-  موتور را متناسب با بار انتخاب کنید. بعبارت دیگر از انتخاب موتور بزرگتر از نیاز بار اجتناب کنید.

4-  هنگام خرید موتور، موتورهای با راندمان بالا(Energy Efficient Motors) را انتخاب کنید. و اگر سفارش ساخت ماشینی را به ماشین ساز میدهید از او بخواهید از موتورهای با راندمان بالا استفاده کند.

5- در جاهائی که نیاز به تغییر دور است از کنترل کننده دور موتور(Frequency Converter) استفاده کنید.

6-  در کنترل فلو/حجم در پمپ/فن از کنترل کننده دور موتور استفاده کنید.

7-  معمولا جایگزینی یک موتور با راندمان بالا بجای یک موتور سوخته با توجه به هزینه های چرخه عمر آن اقتصادی است. بنابراین توصیه میشود با بررسیهای سیستماتیک حتی المقدور بجای سیم پیچی مجدد موتور سوخته آنرا با موتور با راندمان بالا جایگزین کنید.

8-  شبکه توزیع برق کارخانه را همواره چک کنید.

9-  ولتاژ اعمالی به موتور باید ثابت و برابر با ولتاژ نامی موتور باشد.

10-  موتورها را بموقع روغنکاری کنید.

11-  سیستم تهویه موتور را همواره کارآمد نگهدارید. و دمای موتور را کنترل کنید.

12-  از عدم تقارن ولتاژ برق کارخانه جلوگیری کنید.

13- از ترانسفورماتور متناسب با بار استفاده کنید.

13-  در انتخاب درایو های ولتاژ متوسط(Medium Voltage AC Drive) دقت بیشتری بعمل آورید.( توصیه میشود از چهارچوب پیشنهادی در این مقاله کمک بگیرید.)

14-  شرکت پرتو صنعت همواره حاضر است بازگشت سرمایه ناشی از صرفه جوئی انرژی الکتریکی با استفاده از درایو را تضمین نماید. حتی در مواردی خود حاضر به سرمایه گذاری در تاسیسات شما خواهد بود. بنابراین در ممیزی انرژی تا آنجا که مسئله مربوط به استفاده از درایو میشود میتوانید با این شرکت مشاوره کنید.

 خلاصه

در اين مقاله بطور خلاصه به اهميت صرفه جوئي انرژي در بخشهاي صنعت اشاره كرديم. و خاطر نشان کرديم كه اين موضوع از دوجنبه اقتصادي و زيست محيطي اهميت دارد. بايد اضافه نمود كه بهينه سازي مصرف انرژي بخشي از سياستهاي دولتي هر كشور پيشرفته اي نيز ميباشد. در ايران نيز دولت بتدريج به اين موضوع علاقه مند شده و اقداماتي نيز در حال انجام ميباشد. اشاره شد كه در ارتباط با صرفه جوئي انرژي ، موتورهاي الكتريكي ميتواند يك هدف بسيار مهم باشد. برتریهای فنی موتورهای با راندمان بالا نسبت به سایر موتورها موجب شده است که کشورهای پیشرفته تولید موتورهای معمولی را طبق یک جدول زمانی متوقف سازند . توصيه شد كه كارخانجات ميتوانند با بكارگيري اقدامات ساده و بسيار كم هزينه میتوانند صرفه جوئي قابل توجهي در مصرف انرژي بدست آورند. در ادامه مقاله از كنترل كننده هاي دور موتور بعنوان دستگاههاي فوق العاده مؤثر در كاهش انرژي مصرفي بسياري از تجهيزات كارخانجات ياد كرديم.  و نشان داديم كه در كاربردهائي نظير فن و پمپ استفاده از درايوها ميتواند تا 50 درصد در كاهش مصرف انرژي مؤثر باشند. ضمنا به یک نمونه عملی با نتایج عالی در صنایع کشورمان اشاره کردیم. و در خاتمه توصیه های مفید و عملی برای بهینه سازی مصرف انرژی در صنایع مطرح شد.

 به اميد روزي كه كارخانجات كشورمان با رعايت اين نكات مسئوليت اجتماعي خود را در قبال محيط زيست ايفا كنند، و با بكارگيري اين اصول نسبت به رقباي خود برتري اقتصادي بدست آورند

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:25  توسط 66  | 

 
  • آيا می دانيد اگر موتور آسنكرونی سه فازی داشته باشيم و 6 سر سيم ، كه سر سيم های آن مشخص نيست ، چه بايد كرد ؟؟
  • اگر اين سر سيم ها اشتباه وصل شود در عملكرد موتور چه تغييری حاصل می شود ؟

تعيين آرايش كلافها در شيار :

موتورهای سه فاز از سه سيم پيچ تشكيل شده كه هر كدام از اين سيم پيچها 3/1 شيارهای استاتور را اشغال می كند. اين سيم پيچها به فاز اول (R) ، فاز دوم (S) ، فاز سوم (T) شناسايی می شوند.

  • سيم پيچی كه از فاز Rتغذيه می كند شروع سيم پيچی را (U ) و انتهای آنرا با ( X )
  • سيم پيچی كه از فاز S تغذيه می كند شروع سيم پيچی را (V ) و انتهای آنرا با ( Y )
  • سيم پيچی كه از فاز T تغذيه می كند شروع سيم پيچی را (W ) و انتهای آنرا با ( Z )


برای يافتن سر سيم ها‌ :

ابتدا بايد دو سر هر كلاف را پيدا كنيد از مولتی متر يا هر روش ديگری كه می شناسيد .( يك سر مولتی متر را به يك سر سيم گرفته ، سر ديگر مولتی متر را با 5 سر سيم باقی مانده امتحان می كنيد . هر كدام كه راه داد ، آن يك كلاف سيم پيچ است . )

اشتباه در سرسيم ها :

همانطور كه می دانيم موتور سه فاز از سه سيم پيچ تشكيل شده است.كه هر كدام از سيم پيچها 3/1 شيارهای استاتور را اشغال كرده وباعث تشكيل قطب در موتور می شود و قطب ها حركت دورانی به روتورمی دهد . حال اگر سر سيمی تغيير كند در موتور ايجاد قطب نمی شود و موتور حركت نمی كند و می تواند باعث سوختن موتور شود .

قبل از انجام كار اگر بار روی موتور قرار دارد بار را از روی موتور برداريد. ( تسمه يا ....)

برای آشنايی بيشتر كتاب زير را پيشنهاد می كنم :

  • محاسبه و طراحی موتورهای القايی سه فاز
  • تاليف :مهندسان عراقی و رحيميان پرور و حيدری و معيری
  • ناشر : شركت سيم لاكی فارس
+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:24  توسط 66  | 

 

سنکرون کردن و شرایط آن

تعریف سنکرون کردن : وصل دو شبکه کاملاً مجزا به طریقی که هیچ نوع شدت جریان ضربه ای قابل ملاحظه ای ایجاد نشود .

شرایط سنکرون کردن :

  1. برابری ولتاژها : توسط تغییر شدت جریان تحریک ژنراتورها در نیروگاهها و استفاده از جبران کننده ها در پست ها صورت می گیرد .
  2. برابری فرکانس ها : توسط تنظیم محرک اولیه ژنراتورها صورت می گیرد .
  3. برابری فاز اختلاف سطح ها (هم فاز بودن) : برای هر سیستمی که برای اولین بار وارد مدار می شود ، قبل از وارد مدار شدن توسط گروه تعمیرات تست می گردد . این ترتیب تا زمانی که تغییرات اساسی روی شبکه انجام نشود ، برقرار است .
  4. برابری حوزۀ دوار : ترتیب صحیح فازها را می توان توسط سه عدد لامپ کنترل نمود . این لامپ ها مابین فازهای هم نام که باید به هم متصل شوند ، بسته می شوند . اگر در این حالت (قبل از پارالل) ترتیب فازها صحیح باشد ، لامپ ها با هم خاموش و با هم روشن می شوند ولی اگر ترتیب فازها غلط باشد ، لامپ ها یکی پس از دیگری خاموش و روشن می شوند .


سنکرون کردن دو شبکه به دو صورت انجام می گیرد :

سنکرون کردن به طریقه اتوماتیک

در این حالت اپراتور مسئول ، دکمۀ اتوماتیک سنکرون را فشار داده و منتظر می ماند . سیستم اتوماتیک سنکرون وارد مدار شده و به طور خودکار فرکانس ها و ولتاژها را مساوی می نماید و در شرایطی که دو سیستم هم فاز شدند ، دژنکتور به طور اتوماتیک وصل می گردد . اگر نیاز باشد عمل پارالل در پست ها انجام گیرد ، لازم است همزمان با مرکز دیسپاچینگ ملی تماس وجود داشته باشد تا با تغییراتی که در تولید مناطق مختلف انجام می گیرد ، فرکانس دو شبکه برابر گردد .

سیستم اتوماتیک سنکرون معمولاً بین 5 تا 10 دقیقه در مدار می ماند . اگر در این مدت شرایط سنکرون آماده گردید ، دو شبکه با هم پارالل می گردند . در غیر این صورت این سیستم از مدار خارج می گردد .

سنکرون کردن به طریقه دستی

پس از مساویکردن ولتاژها و فرکانس های دو شبکه با توجه به حرکت عقربه دستگاه سنکرونسکوپ ، زمانی که عقربه روی نقطه صفر رسید ، دو شبکه با هم فاز می باشند . در آن لحظه می توان اقدام به وصل دژنکتور نمود .

 

سنکروچک

تبدیل یک شبکه خطی به یک شبکه رینگ با وصل یک دژنکتور را سنکروچک گویند . زمانی که در شبکه سراسری حادثه ای باعث قطع یک یا چند خط انتقال نیرو شود ، شبکه سراسری از حالت رینگ خارج شده و به شبکه خطی تبدیل می گردد . چون فرکانس در این شبکه تغییر نمی کند این شبکه سنکرون می باشد ولی به خاطر اطمینان ، زمانی که کلید سنکرون روشن می شود ، اطلاعات روی تابلوی سنکرون بایستی چک شود .

اولاً عقربه دستگاه سنکرونسکوپ در نقطه ای ثابت باشد . ثانیاً زاویه ای که با نقطه صفر سنکرونسکوپ می سازد ، بیشتر از 15± درجه نباشد . این زاویه را زاویه بار (LOAD ANGLE) می گویند . این زاویه بر اثر اختلاف ولتاژ ارسالی روی شبکه و ولتاژ دریافتی بوجود می آید .

عمل سنکروچک نیز به دو صورت انجام می گیرد :

به طور خودکار

با فشار دادن دکمه خودکار ، سیستم سنکروچک وارد مدار می شود . در صورتی که زاویه بار کمتر از 15± درجه نسبت به نقطه صفر باشد ، بلافاصله دژنکتور وصل شبکه به حالت رینگ در می آید . در غیر این صورت پس از جند دقیقه بدون اینکه دژنکتور وصل شود ، سنکروچک از مدار خارجمی گردد.

به طریق دستی

جهت سنکروچک نمودن دستی شبکه دستگاه سنکرونسکوپ را وارد مدار می نماییم و به عقربه آن توجه می کنیم . چنانچه زاویه بار بیشتر از 15± درجه نباشد ، می توانیم دژنکتور مربوطه را وصل نماییم . در صورتی که زاویه بار از 15± درجه بیشتر باشد ، مجاز به وصل دژنکتور نمی باشیم تا اینکه اقداماتی جهت کم کردن زاویه بار توسط دیسپاچینگ ملی انجام پذیرد آنگاه پس از کاهش زاویه بار می توانیم دژنکتور مربوطه را وصل نمایم .

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:20  توسط 66  | 

 
روغن ترانسفورماتورهاي قدرت نقش بسيار مهمي در عملكرد ترانسفورماتورها دارند. نقش عايق كنندگي، خنك كنندگي و تشخيص عيب از جمله مهمترين وظايف روغن مي باشند. با پيرشدن ترانسفورماتور ، روغن اين دستگاه بعضي از خصوصيات شيميايي و الكتريكي خود را از دست مي دهد. از جمله مهمترين اين خصوصيات مي توان به خصوصيات الكتريكي كه حائز اهميت مي باشند، اشاره نمود.
دلایل اصلی كه روغن ترانسفورماتورهاي قدرت را دچار مشكل مي نمايند عبارتند از:
- افزايش ذرات معلق در روغن
- وجود آب به مقدار زياد در روغن
- وجود آلودگي هاي شيميايي مانند اسيديته و...
مسائل فوق باعث تغيير پارامترهاي متعدد مي شوند. به عنوان مثال افزايش ذرات معلق و وجود آن باعث كاستن قدرت دي الكتريك روغن و افزايش اسيديته، باعث خوردگي كاغذ و اجزاي داخلي ترانسفورماتور مي شود. براي بهبود روغن ترانسفورماتوري كه دچار ضعف هاي متعدد شده است مي توان از فيلتراسيون استفاده نمود. با فيلتر نمودن روغن مي توان ذرات معلق آن را جدا نمود و در نتيجه ولتاژ شكست را بالا برد. مي توان با خلاء نمودن روغن ، آب را بصورت بخار از روغن جدا نمود. حذف آلودگي هاي شيميايي فقط با كمك فيلترهاي شيميايي ممكن است.
از جمله مهمترين آلودگي كه روغن ترانسفورماتور را تحت تأثير قرار مي دهد وجود آب به مقدار كم در داخل روغن است. جدا نمودن آن در داخل ترانسفورماتور به راحتي امكان پذير نمي باشد. علت اين مسأله وجود مقادير بسيار زياد آب داخل كاغذ ترانسفورماتور مي باشد كه با جدا نمودن آب روغن دوباره جايگزين آن مي شود.


 روشهای فیلتر نمودن
 
الف - روشهای Off-line
از زمانهای دور برای بهبود کیفیت عایقی روغن ترانسفورماتورهای قدرت از روشهای فیلتراسیون هنگامی که ترانسفورماتور خاموش بوده است استفاده می کردند. در این روش هنگامی که ترانسفورماتور خاموش می باشد به مدت چند شبانه روز به صورت پیوسته روغن را داخل ترانسفورماتور چرخانده و آنرا در بیرون تحت فیلتراسیون و خلاء به منظور جدا نمودن ذرات معلق و آب محلول قرار می دادند.
این روش دارای معایب فراوانی است از جمله لزوم داغ نمودن روغن ترانسفورماتور و همچنین لزوم خاموش نمودن ترانسفورماتور را می توان نام برد.
 
ب- روشهای نوین – روشهای در حین کار
براي جدا نمودن آب به صورت بهينه، لازم است كه از فيلترهاي در حين كار استفاده نمود. مهمترين مزاياي فيلترهاي (خشك كن) هاي در حين كار خشك نمودن بهينه ترانسفورماتور در طول زمان و همچنين عدم لزوم خاموشي ترانسفورماتور را مي توان عنوان نمود. اصول عملکرد این فیلترها مانند شکل زیر است که در آن روغن از مخزن تحت فشار خارج شده و در مسیر آن یک فیلتر فیزیکی قرار می گیرد. در اینجا ذرات معلق فیلتر شده و تحت تاثیر خلاء آب محلول در آن گرفته می شود. روغن فیلتر شده به وسیله پمپ به ترانسفورماتور برگردانده می شود. این چرخه با دبی پایین در حدود 250 لیتر در ساعت به صورت پیوسته از چند ماه تا چند سال با توجه به وضعیت ترانسفورماتور صورت می گیرد.

مزاياي خشك كردن On-Line روغن و كاغذ عايقي ترانسفورماتورهاي قدرت با استفاده ازدستگاه V30
• رطوبت زدائي از روغن ترانسفورماتور بصورت On-Line
• افزايش ولتاژ شکست روغن عايقي
• رطوبت زدائي از کاغذ عايقي ترانسفورماتور
• کاهش ميزان ذرات معلق داخل روغن ترانس
• کاهش ميزان ضريب تلفات عايقي روغن
• کاهش ميزان اسيديته روغن
• افزايش قابليت بارگيري ترانسفورماتور
• افزايش عمر باقيمانده ترانسفورماتور
• عملکرد مطمئن و عدم تأثير سو بر بهره برداری عادي از ترانسفورماتور
• گاززدائي از روغن ترانسفورماتور با استفاده از روش De-Gassing
• اعلام آلارم و خروج ترانسفورماتور از مدار در صورت تشکيل مقدار زياد گاز
+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:20  توسط 66  | 

 

در ژوئيه 1999، شركت ABB، يك ترانسفور ماتور فشار قوي خشك به نام “Dryformer “ ساخته است كه نيازي به روغن جهت خنك شدن بار به عنوان دي الكتريك ندارد.در اين ترانسفورماتور به جاي استفاده از هاديهاي مسي با عايق كاغذي از كابل پليمري خشك با هادي سيلندري استفاده مي شود.تكنولوژي كابلاستفاده شده در اين ترانسفورماتور قبلاً در ساخت يك ژنراترو فشار قوي به نام "Power Former"در شركتABB به كار گرفته شده است. نخستين نمونه از اين ترانسفورماتور اكنون در نيروگاه هيدروالكتروليك “Lotte fors” واقع در مركز سوئد نصب شده كه انتظار مي رود به دليل نياز روزافزون صنعت به ترانسفورماتور هايي كه ازايمني بيشتري برخوردار باشند و با محيط زيست نيز سازگاري بيشتري داشته باشند، با استقبال فراواني روبرو گردد.

ايده ساخت ترانسفورماتور فاقد روغن در اواسط دهه 90 مطرح شد. بررسي، طراحي و ساخت اينترانسفورماتور از بهار سال 1996 در شركت ABB شروع شد. ABB در اين پروژه از همكاري چند شركت خدماتي برق از جمله Birka Kraft و Stora Enso نيز بر خوردار بوده است.



تكنولوژي

ساخت ترانسفورماتور فشار قوي فاقد روغن در طول عمر يكصد ساله ترانسفورماتورها، يك انقلاب محسوبمي شود. ايده استفاده از كابل با عايق پليمر پلي اتيلن (XLPE) به جاي هاديهاي مسي داراي عايق كاغذي از ذهن يك محقق ABB در سوئد به نام پرفسور “Mats lijon” تراوش كرده است.

تكنولوژي استفاده از كابل به جاي هاديهاي مسي داراي عايق كاغذي، نخستين بار در سال 1998 در يك ژنراتور فشار قوي به نام “ Power Former” ساخت ABB به كار گرفته شد. در اين ژنراتور بر خلاف سابق كه از هاديهاي شمشي ( مستطيلي ) در سيم پيچي استاتور استفاده مي شد، از هاديهاي گرد استفاده شده است. همانطور كه از معادلات ماكسول استنباط مي شود، هاديهاي سيلندري ، توزيع ميدان الكتريكي متقارني دارند. بر اين اساس ژنراتوري مي توان ساخت كه برق را با سطح ولتاژ شبكه توليد كند بطوريكه نياز به ترانسفورماتور افزاينده نباشد. در نتيجه اين كار، تلفات الكتريكي به ميزان 30 در صد كاهشمي يابد.

در يك كابل پليمري فشار قوي، ميدان الكتريكي در داخل كابل باقي مي ماند و سطح كابل داراي پتانسيل زمينمي باشد.در عين حال ميدان مغناطيسي لازم براي كار ترانسفورماتور تحت تاثير عايق كابل قرار نمي گيرد.در يك ترانسفورماتور خشك، استفاده از تكنولوژي كابل، امكانات تازه اي براي بهينه كردن طراحي ميدان هاي الكتريكي و مغناطيسي، نيروهاي مكانيكي و تنش هاي گرمايي فراهم كرده است.

در فرايند تحقيقات و ساخت ترانسفورماتور خشك در ABB، در مرحله نخست يك ترانسفورماتورآزمايشي تكفاز با ظرفيت 10 مگا ولت آمپر طراحي و ساخته شد و در Ludivica در سوئد آزمايش گرديد. “ Dry former” اكنون در سطح ولتاژ هاي از 36 تا 145 كيلو ولت و ظرفيت تا 150 مگا ولت آمپر موجود است.

نيروگاه مدرن Lotte fors

ترانسفورماتور خشك نصب شده در Lotte fors كه بصورت يك ترانسفورماتور – ژنراتور افزاينده عمل مي كند ، داراي ظرفيت 20 مگا ولت امپر بوده و با ولتاژ 140 كيلو ولت كار مي كند. اين واحد در ژانويه سال 2000 راه اندازي گرديد. اگر چه نيروگاه Lotte fors نيروگاه كوچكي با قدرت 13 مگا وات بوده و در قلب جنگلي در مركز سوئد قرار دارد اما به دليلنوسازي مستمر، نيروگاه بسيار مدرني شده است. در دهه 80 ميلادي ، توربين هاي مدرن قابل كنترل از راه دور در ان نصب شد و در سال 1996، كل سيستم كنترل آن نوسازي گرديد. اين نيروگاه اكنون كاملاً اتوماتيك بوده و از طريق ماهواره كنترل مي شود.

ويژگيهاي ترانسفورماتور خشك

ترانسفورماتور خشك داراي ويژگيهاي منحصر بفردي است از جمله:

1- به روغن براي خنك شده با به عنوان عايق الكتريكي نياز ندارد.

2- سازگاري اين نوع ترانسفورماتور با طبيعت و محيط زيست يكياز مهمترين ويژگي هاي آن است. به دليل عدم وجود روغن، خطر آلودگي خاك و منابع آب زير زميني و همچنين احتراق وخطر آتش سورزي كم ميشود.

3- با حذف روغن و كنترل ميدانهاي الكتريكي كه در نتيجه آن خطر ترانسفور ماتور از نظر ايمني افراد ومحيط زيست كاهش مي يابد، امكانات تازه اي از نظر محل نصب ترانسفورماتور فراهم ميشود.به اين ترتيبامكانات نصب ترانسفورماتور خشك در نقا شهري و جاهايي كه از نظر زيست محيطي حساس هستند،فراهم ميشود.

4- در ترانسفورماتور خشك به جاي بوشينگ چيني در قسمتهاي انتهايي از عايق سيسيكن را بر استفاده ميشود.به اين ترتيب خطر ترك خوردن چيني بوشينگ و نشت بخار روغن از بين ميرود.

5- كاهش مواد قابل اشتعال، نياز به تجهيزات گسترده آتش نشاني كاهش ميدهد. بنابراين از اين دستگاهها در محيط هاي سر پوشيده و نواحي سرپوشيده شهري نيز مي توان استفاده كرد.

6- با حذف روغن در ترانسفورماتور خشك، نياز به تانك هاي روغن، سنجه سطح روغن، آلارم گاز و ترمومتر روغن كاملاً از بين ميرود.بنابراين كار نصب آسانتر شده و تنها شامل اتصال كابلها و نصب تجهيزات خنك كننده خواهد بود.

7- از ديگر ويژگي هاي ترانسفورماتور خشك، كاهش تلفات الكتريكي است. يكي از راههاي كاهش تلفات و بهينه كردن طراحي ترانسفورماتور، نزديك كردن ترانسفورماتور به محل مصرف انرژي تا حد ممكن است تا از مزاياي انتقال نيرو به قدر كافي بهره برداري شود. با بكار گيري ترانسفورماتور خشك اين امر امكان پذير است .

8- اگر در پست، مشكل برق پيش آيد، خطري متوجه عايق ترانسفورماتور نمي شود. زيرا منبع اصلي گرما يعني تلفات در آن توليد نمي شود.بعلاوه چون هوا واسطه خنك شدن است و هوا هم مرتب تعويض و جابجا مي شود، مشكلي از بابت خنك شدن ترانسفورماتور بروز نمي كند.

نخستين تجربه نصب ترانسفررماتور خشك

ترانسفورماتورخشك براي اولين بار در اواخر سال 1999 در Lotte fors سوئد به آساني نصب شده و از آن هنگام تاكنون به خوبي كار كرده است. در آينده اينزديك دومين واحد ترانسفورماتور خشك ساخت ABB (Dry former ) در يك نيروگاه هيدروالكتريك در سوئد نصب مي شود.

چشم انداز آينده تكنولوژي ترانسفورماتور خشك

شركت ABB در حال توسعه ترانسفورماتور خشك Dryformer است. چند سال اول از آن در مراكز شهري و آن دسته از نواحي كه از نظر محيط زيست حساس هستند، بهره برداري مي شود. تحقيقات فني ديگري نيز در زمينه تپ چنجر خشك، بهبود ترمينال هاي كابل و سيستم هاي خنك كن در حال انجام است. در حال حاضر مهمترين كار ABB، توسعه و سازگار كردن Dryformer با نياز مصرف كنندگان براي كار در شبكه و ايفاي نقش مورد انتظار در پست هاست.

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:20  توسط 66  | 

 

ترانسفورماتورها يكي از مهمترين عناصر شبكه هاي انتقال و توزيع هستند . در ترانسفورماتورها انرژي الكتريكي در مس سيم پيچها ، آهن هسته ، تانك ترانس و سازه هاي نگهدارنده بصورت حرارت تلف مي شود. حتي در زمانيكه ترانسفورماتور بدون بار است ، در هسته تلفات بي باري (NLL) بوجود مي آيد. در نتيجه مطالعات و بررسيهاي انجام شده ، در 50 ساله اخير محققان موفق شده اند با صرف هزينه اي دو برابر براي هسته ، تلفات بي باري را به يك سوم كاهش دهند. اخيراً با جايگزيني فلزات بيشكل و غير بلوري (Amorphous) بجاي آهن سيليكوني درهسته ترانسفورماتورهاي توزيع با قدرت نامي كوچكتر از 100 KVA ، تلفات بي باري باز هم كاهش يافته است . اين كار هنوز در مورد ترانسفورماتورهاي بزرگ با قدرت نامي بزرگتر از 500KVA انجام نشده است . اگرچه براي هر ترانسفورماتور ، 1 درصد توان نامي آن بعنــوانتوان تلفـاتي در نظر گرفتـه مي شود، اما بايد توجه داشت كه آزاد سازي بخش كوچكي از اين تلفات در طول عمر ترانسفورماتور صرفه جوئي كلاني به همراه خواهد داشت .



در ترانسفورماتورهاي قدرت معمول ، تقريباً 80% از كل تلفات ، مربوط به تلفات بارداري ترانسفورماتور (LL) است كه از اين 80% ، سهم تلفات اهمي سيم پيچها 80 % بوده و 20 % ديگر مربوط به تلفات ناشي از جريانهاي فوكو و شارهاي پراكنده است . لذا تلاشهاي زيادي جهت كاهش تلفات بارداري صورت مي گيرد. در ابررساناها بعلت عدم وجود مقاومت اهمي در برابر جريان d c تلفات اهمي برابر با صفر است . لذا با استفاده از ابررساناها در ترانسفورماتورها، تلفات كل ترانسفورماتور، كاهش قابل ملاحظه اي خواهد يافت. در مقابل جريان ac ، در ابر رساناها تلفاتي از نوع تلفات فوكو رخ مي دهد. گرماي بوجود آمده از اين تلفات بايد با استفاده از سيستم هاي خنك كننده دفع گردد.بررسيهاي بعمل آمده حاكي از آن است كه ترانسفورماتورهاي ابررسانا با قدرت 10 MVA و بالاتر عملكرد نسبتا بهتري داشته و نسبت به ترانسفورماتورهاي معمولي قيمت پايينتري خواهند داشت .

تلاشهايي كه جهت توسعه ترانسفورماتورهاي ابررسانا انجام مي گيرد صرفاً بخاطر مسايل اقتصادي و كاهش هزينه كل نيست. يكي ديگر از دلايل طرح اين مبحث آنست كه در مراكز پر تراكم شهري، رشد مصرف 2 درصدي (ساليانه ) به معني نياز به ارتقاء ظرفيت سيستم هاي موجود است . از طرفي بسياري ازپستهاي توزيع بصورت سرپوشيده (Indoor) بوده و در كنار ساختمانها نصب شده اند. در اين نوع پست ها همانند ديگر پستهاي توزيع از ترانسهاي روغني استفاده ميشود كه استفاده از روغن مشكلات و خطرات زيست محيطي و ايمني مربوط به خود را دارد. در حاليكه در ترانسفورماتورهاي ابررسانا، ماده خنك كننده نيتروژن است كه خطري براي افراد و موجودات زنده نداشته ، بعلاوه ، خطر آتش سوزي نيز وجود ندارد. بهمين لحاظ خنك كننده مورد استفاده در ترانسفورماتورهاي ابررسانا به هيچ عنوان قابل مقايسه با روغنهاي قابل اشتعال و مواد شيميايي همچون PCB نيست.

توجه جدي به ترانسفورماتورهاي ابررسانا از زمان شناخت ابررساناهاي دماي پايين LTS ( اعم از Nb-Ti و Nb3-Sn ) از اوايل دهه 1960 ، آغاز شد. مطالعاتي كه در آن زمان بر روي اين ترانسفورماتورها انجام شد ، نشان داد كه جهت بهره برداري از اين ترانسفورماتورها، بايد آنها را در دماي 4 .2K نگه داشت كه انجام چنين كاري اقتصادي نيست . بهمين دليل گامها بسوي كشف موادي با قابليت ابررسانايي در دماهاي بالاتر ، برداشته شد. در اواسط دهه 1970 ، شركت Westing House ، طرح يك ترانسفورماتور نيروگاهي 550/22kv , 1000MVA را مورد مطالعهقرار داد و به اين نتيجه رسيد كه مشكلاتي از قبيل انتقال جريان ، عملكرد فوق جريان (Overcurrent) و حفاظت همچنان وجود خواهند داشت .

+ نوشته شده در  سه شنبه بیست و هفتم بهمن 1388ساعت 18:19  توسط 66  | 

 

انواع تابلوها : تابلوی ايستاده قابل دسترسی از جلو- سلولی-تمام بسته ديواری كه خود اين تابلو ها می توانند اصلی- نيمه اصلی و فرعی باشند .

تابلوی اصلی: در پست برق و بطرف فشار ضعيف ترانس متصل است .

تابلوی نيمه اصلی :اينگونه تابلو ها ی برق بلوك ساختمانی يا قسمت مستقلی از مجموعه را توزيع و ازتابلوی اصلی تغذيه می شود .

تابلوی فرعی : برای توزيع و كنترل سيستم برق خاصی مانند موتور خانه- روشنايی و غيره به كار می رود و از تابلوی اصلی تغذيه می شود .



معمولا تابلو های موتور خانه از نوع ايستاده و بقيه تابلوها از نوع توكار تمام بسته می باشد (در اين ساختمان تماما" به اين شكل می باشد)در اين ساختمان ليستی تهيه شده كه شامل قطعات مكانيكی و الكتريكی داخلی تابلو می باشد. اين ليست شامل ضخامت ورق - فريم تابلو – روبند- نوع رنگ كاری - جانقشه ای - يرق آلات- نوع تابلو(يك درب- دو درب - نرمال - اضطراری) اسم شركت سازنده تابلو - اسم تابلو – چراغ سيگنال (رنگ – تعداد- وات - نوع لامپ - فيوز ) مشخصات فيوزهای داخل تابلو بعلاوه پايه فيوز – كليد مينياتوری (تكفاز - سه فاز- ولتاژ قابل تحمل ) رله- كنتاكتور –كليد گردان (با مشخصات كامل ) مشخصات ترمينال - مشخصات شين فاز - نول- مقره های پشت شين - نوع سيم كشی داخلی تابلو- نوع سيم كشی خط به تابلو - طريقه انتقال سيم در تابلو(ترانكينگ-استفاده از كمربند) استفاده از سيم يك تكه در تابلو – شماره گذاری خطوط روی ترمينال –استفاده از كابلشو . تمام اين عناوين با مشخصات كامل می باشد .وجود اين مشخصات باعث عمر بيشتر تابلو- خطر كمتر و تعويض آسانتر می شود .

· وجود سيم ارت در تابلوی برق ضروری و با رنگ سبز می باشد · خطوط R -S - T به تر تيب با رنگ زرد- قرمز- آبی - سيم نول با رنگ سياه می باشد

· در بعضی از تابلو ها روی درب تابلو ها يك سری كليد وجود دارد START- STOP

يا يك كليد گر دان كه برای روشن و خاموش كردن روشنايی و يا موتور به كار می رود .

· برای تابلو ها دو نوع نقشه می كشند 1 - رايزر دياگرام كه مكان تابلو در آن قيد شده است .2 - نقشه داخل تابلو (كه خطوط - فيوز و كليدها در آن كشيده شده است )

نكات مر بوط به رعايت مسائل ايمنی بر اساس نشريه سازمان برنامه و بودجه و يا 110می باشد .

· شين ها با رنگ نسوز رنگ آميز می شود

· كليد ورودی بايد خودكار باشد. در موارديكه از كليد و فيوز جداگانه استفاده شود كليد بايد قبل از فيوز نصب شود . بطوريكه با خاموش كردن كليد , فيوز نيز قطع شود. كليد اصلی حتی الامكان گردان باشد و از فيوز فشنگی استفاده شود .

· سيم كشی داخلی تابلو با سيم مسی تك لا با عايق حداقل 1000ولت با مقطع مناسب انجام شود .

· ارتفاع با لاترين دسته كليد تابلو 175 سانتيمتر بيشتر نباشد و همچنين قسمت ميانی از سطح زمين 160 سانتيمتر باشد .

· استفاده از سيم 5/1 برای روشنايی با كليد مينياتوری10 آمپر و سيم 5/ 2 برای پريزبا كليد مينياتوری 16 آمپر می باشد .

· محاسبه كابل از طريق سطع مقطع كه در بخش سوم گفته شد, انجام می گيرد .

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:9  توسط 66  | 

 

ساختمان كابلها:

هر نوع هادي كه جريان برق را از خود عبور داده و توسط موادي از محيط اطراف خود عايق شده باشد را كابل مينامند .

مهمترين و بيشترين عايقي كه در ساختمان كابلها بكار ميرود عبارتند از P.V.C (پلي وي نيل كلرايد) كه پرتو دور يا پلاستيك ناميده ميشود

P.V.C عايقي غير قابل اشتعال است و اين مزيت خوبي در كابلها ميباشد داراي انعطاف پذيري زيادي ميباشد

و تنها عيب أن اين است كه در درجه حرارت حدود صفر و زير صفر از أن نميتوان براي عمليات كابل كشي مورد

استفاده قرار داد مواردي مانند ارزاني توليد انبوه و سادگي ساخت باعث شده كه بيش از 90 در صد كابلهاي فشار ضعيف از اين عايق درست شوند.



كابل:

چند نكته مهم و كوتاه:

مقاومت: عبارت است از عكس ال عملي كه هر عنصر با توجه به ساختمان اتمي و تعداد الكترون لايه آخر در مقابل عبور جريان يا حركت الكترونها از خود نشان ميدهد مقاومت با طول هادي نسبت مستقيم و با سطح مقطع نسبت عكس دارد . براي اندازه گيري مقاومت فلزات يك متر از آنرا به سطح مقطع يك ميليمتر مربع انتخاب كرده و مقاومت آنرا اندازه گيري ميكنند (جداول آماده براي همه فلزات وجود دارد) كه به آن مقاومت مخصوص ميگويم و برحسب اهم است.

وقتي ميگوييم مقاومت يك فلز با طول آن نسبت مستقيم دارد يعني هرچه طول بيشتر باشد مقاومت هم بيشتر

ميشود L1

و وقتي ميگوييم مقاومت با سطح مقطع نسبت عكس دارد يعني هر چه سطح مقطع بزرگتر باشد مقاومت كمتر

است L1=L2 S1 نتيجه R1

واحد مقاومت اهم ميباشد كه با حرف يوناني امگا نمايش ميدهند.

هدايت الكتريكي عكس مقاومت است هرچه مقاومت بيشتر باشد هدايت كمتر است و واحد أن مو ميباشد.

G=1/R

مثال: مقاومت يك سيم به طول 100 متر و به سطح مقطع 2 ميليمتر مربع؟

R=A*L/S

R=0.0175*100/2

مقاومت مخصوص = A طول = L سطح مقطع = S مقاومت مخصوص مس =0.0175

واحد علامت كميت نام كميت
اهم R مفاومت
متر L طول
ميليمتر مربع A يا C سطح مقطع
متر/ميليمتر مربع *اهم ή مقاومت مخصوص
زيمنس يا مو G هدايت الكتريكي
ميليمتر مربع*اهم/متر X هدايت مخصوص
كولن Q مقدار الكتريسيته
أمپر I شدت جريان
ثانيه T زمان
ميليمتر مربع/امپر J تكاثف جريان

ساختمان كابلها:

هر نوع هادي كه جريان برق را از خود عبور داده و توسط موادي از محيط اطراف خود عايق شده باشد را كابل مينامند .

مهمترين و بيشترين عايقي كه در ساختمان كابلها بكار ميرود عبارتند از P.V.C (پلي وي نيل كلرايد) كه پرتو دور يا پلاستيك ناميده ميشود

P.V.C عايقي غير قابل اشتعال است و اين مزيت خوبي در كابلها ميباشد داراي انعطاف پذيري زيادي ميباشد

و تنها عيب أن اين است كه در درجه حرارت حدود صفر و زير صفر از أن نميتوان براي عمليات كابل كشي مورد

استفاده قرار داد مواردي مانند ارزاني توليد انبوه و سادگي ساخت باعث شده كه بيش از 90 در صد كابلهاي فشار ضعيف از اين عايق درست شوند.

نوعي عايق ديگر بنام PET (پلي اتيلن) براي كابلها بكار ميرود كه اتشزا بوده و در مكانهاي اختصاصي بكار ميرود .

در بعضي از كابلها از عايق لاستيكي استفاده ميشود كه كاربرد زيادي ندارد.

هاديها از جنس مس و يا الومينيوم ميباشند . در صورتيكه بخواهيم از كابلي با هادي الومينيوم براي كابل كشي هوايي استفاده كنيم بايد يك رشته ان فولاد باشد .

براي شناسائي كابلها از حروفي استفاده ميشود كه روي كابلها نوشته شده است برخي از اين حرف طبق

استاندارد المان V.D.E بشرح زير ميباشد:

N كابل با هادي مسي

NR كابل با هادي ألومينيوم

Y علامت عايق پرتو دور ميباشد

H علامت ورق متاليزه ميباشد

T سيم تحمل كننده در كابل كشي هوايي

R حفاظت فولادي نواري شكل

Y روكش كمربندي پرتو دور

R هادي دايره اي شكل ميباشد

E هادي يك رشته و دايرهاي ميباشد

M هادي چند رشته

S هادي بشكل مثلث

مثال :

روي كابلي نوشته شده Nyyre--0.6/1kv مشخصات آن چيست؟

N هادي از جنس مس

Y روكش هادي از جنس P.V.C

Y روكش كمربندي از جنس P.V.C

R هادي بشكل دايره ميباشد.(سطح مقطع كابل)

E هادي يك رشته و مفتولي ميباشد.

و حداكثر ولتاژ مجاز بين فاز و نول 600 ولت و حداكثر ولتاژ مجاز بين دو فاز حداكثر 1000ولت ميباشد.

شناسائي كابلها:

سايز سيمها و كابلها بر حسب سطح مقطع طبقه بندي شده و طبق جدول زير است:

0.5 - 0.75 - 1 - 1.5 - 2.5 - 4-6-10-16-25-35-50-70-95-120-150-185-240-300-400-500

براي مشخص نمودن يك كابل يا سيم ابتدا تعداد رشته و سپس سطح مقطع سيم از هاديها را ذكر ميكنند مانند

كابل 4*2 كه يعني كابلي كه دو رشته هادي به سطح مقطع 4 دارد .

در كابلها چند رشته و از سايز 16 به بالا سيمهاي فاز و نول داراي مقاطع مختلفند در اكثر كابلها سيم نول به

اندازه دو مرتبه از سيم فاز كمتر است اما در كابلهاي با سطح مقطع بالا اين اختلاف تا سه هم ميرسد سايز كابلها با هادي چند رشته به شرح زير ميباشد.

1.5*4 2.5*4 4*4 6*4 10*4 16*4 10+25*3 16+35*3 25+50*3 70+120*3 70+150*3 95+180*3 120+240*3

مثال : كابل 10+25*3 چه كابلي ميباشد؟

اين كابل سه هادي به سطح مقطع 25 ميليمتر مربع براي فازهاي اصلي و يك هادي به سطح مقطع 10 ميليمتر مربع براي نول دارد.

كابلهاي روغني:

كابلهاي روغني : در بعضي از كابلها از كابلها از عايق هادي ها كاغذ ميباشد ابتدا ذرات بخار و هواي داخل كاغذ

را گرفته و به روغن كه عايق خوبي ميباشد اغشته ميكنند ضخامت كاغذها بسيار كم است و دور هر هادي

چندين دور پيچيده ميشود به اين كاغذها كاغذ اشباع شده ميگويند.

روي نوار روغني يك كاغذ متاليزه از جنس الومينيم ميپيچند كه وظيفه دارد ميزان مغناطيسي اطراف هر هادي را را

محدود نموده و از اثر ان روي ميدان مغناطيسي فاز ديگر بكاهد . از كابلهاي روغني بيشتر در فشار متوسط

استفاده ميشود و بعلت گراني خود كابل و همچنين مفصل و سر كابل در فشار ضعيف بندرت استفاده

ميشود .ممكن است بجاي يك غلاف سربي از سه غلاف كه بدور هر فاز پيچيده شده استفاده شود در اين

صورت به ان كابل روغني سه غلافه ميگويند.

قابليت تحمل بار كابلها

سه رشته

دو رشته

يك رشته

سطح مقطع

25

30

35

1.5

35

40

50

2.5

45

50

65

4

60

65

85

6

80

90

110

10

110

120

155

16

135

155

200

25

165

185

250

35

200

235

310

50

245

280

380

70

295

335

460

95

340

380

535

120

390

435

610

150

445

490

685

185

مقادير فوق براي دما 20 درجه سانتيگراد ميباشد و در صورتيكه دما افزايش پيدا كند و يا تعداد كابلها زياد شود بايد در ضرايب جداول زير مقدار بار دهي كابلها ضرب شود

قابليت تحمل كابلها كابلهاي يك رشته و چند رشته در صورت قرار گرفتن گروهي در زمين

10

8

6

5

4

3

2

تعداد كابل در گودال

0.60

0.62

0.65

0.70

0.70

0.80

0.90

ضريب كاهش


بستگي مقدار كابل با درجه حرارت محيط

35

30

25

20

15

10

5

درجه حرارت محيط برحسب سانتيگراد

0.76

0.85

0.93

1.0

1.07

1.13

1.2

ضريب بار

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:9  توسط 66  | 

 

دستورالعمل نصب ميله اتصال زمين

- مقدمه

- انواع روشهاي متداول اجراي سيستم زمين در شبكه هاي فشار ضعيف در ايران

- نقاطي از سيستمهاي جريان متناوب كه بايد زمين شوند

- محلهاي انجام اتصال زمين در شبكه فشار ضعيف

- زمين كردن مهارهاي پايه

- ساختار هادي زمين

- دستورالعمل نصب ميله ارت جهت اتصال زمين

- نكات مهم در خصوص اتصال زمين



مقدمه

هدف از تدوين اين دستورالعمل ، ايجاد ايمني و حفاظت در برابر آثار اختلاف پتانسيل الكتريكي
تا جائيكه مربوط به اتصال زمين است ، براي افراد در هنگام نصب و بهره‌برداري از تأسيسات و شبكه‌هاي توزيع برق است كه شامل عمليات سرويس و تعميرات نيز مي‌باشد.

بطور كلي اتصال زمين به دو دليل بكار برده مي‌شود:

1- حفظ عايقبندي و حصول اطمينان از عملكرد صحيح تجهيزات الكتريكي ، محدود كردن اضافه ولتاژها و كمك به عملكرد صحيح تجهيزات حفاظتي با قطع مدارهاي معيوب (ديدگاه عملياتي).

2- ايجاد ايمني از يكسو براي افرادي كه بنا به وظيفه شغلي در تماس با تجهيزات الكتريكي قرار دارند و از سوي ديگر براي مشتركين و همچنين محدود كردن خطر آتش سوزي ، از طريق قطع سريع مدار معيوب (ديدگاه ايمني يا حفاظتي)

انواع روشهاي متداول اجراي سيستم زمين در شبكه هاي فشار ضعيف در ايران

TN ، كه مي­تواند به سه صورت مختلف موجود باشد:

1) TN-S كه در آن ، در سراسر سيستم ، بدنه­هاي هادي از طريق يك هادي مجزا (PE) به نقطه خنثي (N) در مبدأ سيستم وصل مي­شود.

2) TN-C

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:8  توسط 66  | 

 

موارد كاريردي مورد نياز جهت ارائه نقشه هاي برق به نظام مهندسي ساختمان اصفهان در ادامه مطلب



 

ليست نقشه‌ها

-         در شيت  اول به صورت كامل با شماره پلان مربوطه ارائه گردد. و در پايين هر پلان نيز اين شماره آورده شود.

 

توضيحات فني

-         توضيحات مربوط به هر نقشه در پلان مربوط به آن نوشته شود.

 

جدول علائم اختصاري بكار برده شده در نقشه‌ها

-         علائم اختصاري مربوط به هر نقشه در پلان مربوط به آن درج شود.

 

سيستم اتصال زمين و مشخصات فني آن

-         مشخص نمودن محل چاه ارت در نقشه توسط مهندس طراح پيشنهاد مي‌گردد و با نظر مهندس ناظر مي‌تواند تغيير كند.

-         توصيه مي‌گردد در چاه ارت بجاي استفاده از نمك و زغال از مواد كاهنده مقاومت زمين مانند بنتونيت استفاده گردد.

-    نصب لوله گالوانيزه براي مرطوب نگهداشتن چاه‌هاي ارتي كه جنس الكترود آنها مس مي‌باشد صحيح نيست و بايستي از لوله PVC استفاده شود.

-         حداكثر مقاومت چاه ارت برابر 2 اهم ذكر گردد.

-    نحوه اتصال سيم ارت به صفحه يا ميله و مشخصات صفحه  يا ميله و سيم ارت از قبيل جنس، ابعاد،  مقدار و نوع الكتروليت مورد استفاده و عمق چاه با نظر مهندس طراح معين گردد.

 

سيستم روشنايي و پريزهاي برق

-    جهت فضاهاي باز مانند حياط بايستي از پريز ارت‌دار و درب‌دار (باراني) استفاده شود.  همچنين در فضاهاي قابل شستشو مانند پاركينگ و غيره استفاده از اين پريزها الزامي است.

-         تغذيه هيچ نوع چراغي از خط پريزها مجاز نيست.

-    نصب چراغ ايمني (خودشارژ) در مكانهاي مورد اشاره در مبحث 13 مقررات ملي ساختمان الزامي است. و مي‌تواند از يك خط جداگانه تغذيه گردد.

-         محل نصب كليه تابلوهاي برق در نقشه‌ها مشخص شود. (در نقشه روشنايي و در نقشه پريزها).

-         نصب چراغ خطر براي ساختمانهاي بلند مرتبه الزامي است.

-    از هر مدار روشنايي مي‌توان يك موتور كوچك را، به شرط آنكه توان آن از 100 وات تجاوز نكند تغذيه كرد. (مانند فن‌هاي آشپزخانه و سرويس‌هاي بهداشتي)

-    در ساختمانهاي مسكوني هر مدار روشنايي نبايد بيش از 12 چراغ يا نقطه روشنايي را اگر دربيش از يك اتاق يا فضاي مشخص قرار گرفته باشند تغذيه كند همچنين تعداد چراغهاي مدار كه در يك اتاق يا فضاي مشخص نصب مي‌شوند تنها به جريان مجاز مدار محدود مي‌شود.

-         هر مدار پريز نبايد بيش از 12 پريز مربوط به مصارف عمومي را تغذيه كند.

-    در يك اتاق يا فضاي مشخص كليه پريزها بايد فقط از يك مدار تغذيه‌ كنند مگر اينكه فاصله مستقيم دو پريز وصل شده به دو مدار مختلف 5  متر يا بيشتر باشد.

-    پريزهاي بكار رفته در حمام بايد مجهز به هادي حفاظتي باشند مگر در مواردي كه از پريزهاي مخصوص مجهز به ترانسفورماتور ايمني استفاده شده باشد (كه در اين صورت اجراي هادي حفاظتي الزامي است و در محل پريز عايق‌بندي و رها شود)

-         چراغهاي نصب شده در محدوده دوش در حمام بايد داراي درجه حفاظت Ip44 يا بيشتر باشد.

 

سيستم پريزهاي تلفن و آنتن تلويزيون

1.     وجود پريز برق در مجاورت پريز تلويزيون حتماً لازم است.

2.     وجود پريز برق در كنار پريز تلفن توصيه مي‌شود ولي الزامي نمي‌باشد.

 

سيستم درب بازكن و زنگ اخبار

1.     حداقل سطح مقطع سيم تلفن، در بازكن، زنگ اخبار و زنگ احضار بايد m2 0.6 باشد.

2.  كابل‌هاي سيستم توزيع آنتن بايد از نوع هم محور (كواكسيال) با امپدانس مشخصه 75 اهم باشد و سطح مقطع آن با توجه به مشخصات سيستم و افت سيگنال آن انتخاب شود.

 

تابلوهاي برق و تابلو كنتور

-    درخصوص پمپ ذخيره آب و پمپ آب آتش‌نشاني لازم است براي هر كدام يك تغذيه مستقل در تابلو عمومي پيش‌بيني و به سمت تابلو قدرت و فرمان هدايت شود. 

-         براي تابلو مصارف عمومي و ساير تابلوها كليد FI در نظر گرفته شود.

-         ديماند درخواستي از شبكه و سايز كابل‌هاي ورودي به ساختمان و طبقات مشخص شود.

-         هر تابلو بايد به يك كليد اصلي جداكننده قابل قطع و وصل زير بار مجهز باشد.

-    در صورت منظور نمودن يك خط تغذيه جداگانه براي مدار زنگ اخبار و احضار لازم است به وسيله كليد مينياتوري يا فيوز فشنگي حداكثر 4 آمپر محافظت گردد.

 

آسانسور

-    روشنايي چاه آسانسور (نه چاهك) مطابق بند 15-2-3-3-8 مبحث 15 مقررات ملي ساختمان ضروري است كه لازم است نقشه آن ارائه گردد.

-         قدرت الكترو موتور آسانسور مشخص گردد.

-         در رايزر دياگرام‌ها  اندازه  لوله و مشخصات كابلها و سيم‌ها ذكر شود.ر

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:8  توسط 66  | 

 

رشته تابلوسازی رشته ای ترکيبی می باشد و لازم است اينجا عنوان کنیم که جزوه يا کتاب مشتملی در مورد تابلوهای برق وجود ندارد البته تعدادی کتاب به زبان انگليسی در اينترنت جهت فروش وجود دارد و همانطوری که می دانيم خريد اينترنتی کتب خارجی کمی برای ما ايرانيان مشکل است. اما با توجه به علاقه برخی از علاقه مندان به اين مبحث ابتدا يک راهنمايی کلی در مورد اين که چگونه می توان با اين مبحث آشنا شد را اينجا عنوان می کنیم .

تابلوی برق در حقيقت يک محفظه می باشد که تجهيزات الکتريکی را در بر می گيرد و البته تابلو ها می توانند در بر گيرنده تجهيزات پنيوماتيک نيز باشند مانند شير های برقی ، کمپرسور و ....

 

به طور کلی لازم به ذکر است که جهت فراگيری فنون مربوط به تابلوهای برق نياز به فراگيری چندين آيتم اصلی می باشد که در ذيل به اختصار عنوان می کنیم :



1-     اصول کلی و استانداردهای مربوط به تابلو های برق و محفظه های الکتريکی مانند درجه حفاظتی IP و درجه بندی جداسازی محفظه ها Segregation و مقابله با عوامل جوی و ...

2-     اصول تخصصی در مورد تابلو های برق ، مقادير نامی مانند ولتاژ و جريان نامی و ..

3-     آشنايی با تجهيزات الکتريکی و عملکرد آنها و نحوه انتخاب صحيح آنها

4-     آشنايی با تاسيسات الکتريکی وآُشنا با محاسبات مربوطه

5-     آشنايی با دروسی مانند رله و حفاظت سيستم ها – طرح پست الکتريکی و ...

6-     آشنايی با طراحی مدارات فرمان و کنترل و لاجيک

 

 

جهت فراگيری هر يک از فنون ياد شده لازم است به صورت جداگانه اقدام به فراگيری نمود. البته وقتی تنها در مورد تابلو های برق صحبت به ميان می آيد آيتم های يک و دو فوق الذکر بسيار پررنگ تر می باشند.

 

البته در حرفه تابلو سازی علوم مهم ديگری نيز نقش دارد که از نام بردن کليه آنها صرف نظر می کنیم مانند علم ارگونومی و .....

 

به صورت کلی در مورد تابلو های برق اصول کلی و استاندارد و همچنين تعاريف کلی وجود دارد و بسيار حائز اهميت است مثلا نوع تابلو از نظر ساختمان آنها به عنوان مثال تابلوهای ايستاده – ديواری – ميزی – رک و ... و هر يک از آنها ساختمان منحصر به فردی دارند و کاربرد آنها نيز متفاوت است.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:7  توسط 66  | 

انواع تابلوها :تابلوی ايستاده قابل دسترسی از جلو- سلولی-تمام بسته ديواری كه خود اين تابلو ها می توانند اصلی- نيمه اصلی و فرعی باشند.
تابلوی اصلی: در پست برق و بطرف فشار ضعيف ترانس متصل است.
تابلوی نيمه اصلی :اينگونه تابلو ها ی برق بلوك ساختمانی يا قسمت مستقلی از مجموعه را توزيع و ازتابلوی اصلی تغذيه می شود .
تابلوی فرعی: برای توزيع و كنترل سيستم برق خاصی مانند موتور خانه- روشنايی و غيره به كار می رود و از تابلوی اصلی تغذيه می شود.
معمولا تابلو های موتور خانه از نوع ايستاده و بقيه تابلوها از نوع توكار تمام بسته می باشد (در اين ساختمان تماما" به اين شكل می باشد)در اين ساختمان ليستی تهيه شده كه شامل قطعات مكانيكی و الكتريكی داخلی تابلو می باشد.


اين ليست شامل ضخامت ورق - فريم تابلو – روبند- نوع رنگ كاری - جانقشه ای- يرق آلات- نوع تابلو(يك درب- دو درب - نرمال - اضطراری) اسم شركت سازنده تابلو - اسم تابلو – چراغ سيگنال (رنگ – تعداد- وات - نوع لامپ - فيوز ) مشخصات فيوزهای داخل تابلو بعلاوه پايه فيوز – كليد مينياتوری (تكفاز - سه فاز- ولتاژ قابل تحمل )رله- كنتاكتور –كليد گردان (با مشخصات كامل ) مشخصات ترمينال - مشخصات شين فاز - نول- مقره های پشت شين - نوع سيم كشی داخلی تابلو- نوع سيم كشی خط به تابلو - طريقه انتقال سيم در تابلو(ترانكينگ-استفاده از كمربند) استفاده از سيم يك تكه در تابلو – شماره گذاری خطوط روی ترمينال –استفاده از كابلشو . تمام اين عناوين با مشخصات كامل می باشد .وجود اين مشخصات باعث عمر بيشتر تابلو- خطر كمتر و تعويض آسانتر می شود.

· وجود سيم ارت در تابلوی برق ضروری و با رنگ سبز می باشد .
· خطوط R -S - T به تر تيب با رنگ زرد- قرمز- آبی - سيم نول با رنگ سياه می باشد
· در بعضی از تابلو ها روی درب تابلو ها يك سری كليد وجود دارد START- STOP
يا يك كليد گر دان كه برای روشن و خاموش كردن روشنايی و يا موتور به كار می رود.
· برای تابلو ها دو نوع نقشه می كشند 1 - رايزر دياگرام كه مكان تابلو در آن قيد شده است .2- نقشه داخل تابلو (كه خطوط - فيوز و كليدها در آن كشيده شده است)
نكات مر بوط به رعايت مسائل ايمنی بر اساس نشريه سازمان برنامه و بودجه و يا 110می باشد.
· شين ها با رنگ نسوز رنگ آميز می شود
· كليد ورودی بايد خودكار باشد. در موارديكه از كليد و فيوز جداگانه استفاده شود كليد بايد قبل از فيوز نصب شود . بطوريكه با خاموش كردن كليد , فيوز نيز قطع شود. كليد اصلی حتی الامكان گردان باشد و از فيوز فشنگی استفاده شود.
· سيم كشی داخلی تابلو با سيم مسی تك لا با عايق حداقل 1000ولت با مقطع مناسب انجام شود.
· ارتفاع با لاترين دسته كليد تابلو175 سانتيمتر بيشتر نباشد و همچنين قسمت ميانی از سطح زمين 160 سانتيمتر باشد.
· استفاده از سيم 5/1 برای روشنايی با كليد مينياتوری10 آمپر و سيم 5/ 2 برای پريزبا كليد مينياتوری 16 آمپر می باشد.
· محاسبه كابل از طريق سطع مقطع كه در بخش سوم گفته شد, انجام می گيرد.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:7  توسط 66  | 

معمولی ترین لامپ های رشته دار لامپ های معمولی میباشند که در منازل مورد استفاده قرار می گیرد . نوع دیگری از لامپ های رشته ای میباشد که به لامپ های منعکس کننده معروف می باشند که شار را در جهت معینی افزایش میدهند .نوع سوم این لامپ ها لامپ های هالوژنی می باشد در لامپ های هالوژنی برای جلو گیری از تبخیر سطحی تنگستن مقدار کمی از یکی از گاز های  ها لوژن مثل ید یا برم را به داخل لامپ اضافه می کنند .
در مجاورت حباب لامپ که در درجه حرارت ( حدود 250 درجه سانتی گراد ) است تنگستن تبخیر شده با ید ترکیب میشود  و یدور تنگستن را به وجود میا ورد . در حوالی رشته که درجه حرارت بیشتری دارد یدور تنگستن تجزیه شده و تنگستن روی رشته می نشیند . در این لامپ ها به علت کم بودن نگرانی از تبخیر تنگستن میتوان رشته را در درجه حرارت بالا تری به کار برد . به این ترتیب لامپ های هالوژنی با توان 10 کیلو وات با  بهره نوری در حدود 25 لومن بر وات و عمری حدود دو برابر لامپ های رشته دار معمولی توليد میکند .

معمولی ترین لامپ های رشته دار لامپ های معمولی میباشند که در منازل مورد استفاده قرار می گیرد . نوع دیگری از لامپ های رشته ای میباشد که به لامپ های منعکس کننده معروف می باشند که شار را در جهت معینی افزایش میدهند .نوع سوم این لامپ ها لامپ های هالوژنی می باشد در لامپ های هالوژنی برای جلو گیری از تبخیر سطحی تنگستن مقدار کمی از یکی از گاز های  ها لوژن مثل ید یا برم را به داخل لامپ اضافه می کنند .
در مجاورت حباب لامپ که در درجه حرارت ( حدود 250 درجه سانتی گراد ) است تنگستن تبخیر شده با ید ترکیب میشود  و یدور تنگستن را به وجود میا ورد . در حوالی رشته که درجه حرارت بیشتری دارد یدور تنگستن تجزیه شده و تنگستن روی رشته می نشیند . در این لامپ ها به علت کم بودن نگرانی از تبخیر تنگستن میتوان رشته را در درجه حرارت بالا تری به کار برد . به این ترتیب لامپ های هالوژنی با توان 10 کیلو وات با  بهره نوری در حدود 25 لومن بر وات و عمری حدود دو برابر لامپ های رشته دار معمولی توليد میکند .
نكته: البته تنگستن تجزیه شده همیشه در قسمتی از رشته که نازک شده است نمی نشيند و بلا خره لامپ در اثر تبخیر سطحی خواهد سوخت  .  و به منظور داشتن  حرارت 250 درجه در این حوالی حباب لامپ را باریک و  دراز به شکل لوله می سازند .
توليد نور در اثر عبور جريان برق در گاز ها ( تخليه الکتريکی در گاز ها )
گاز ها در حالت عادی هادی الکتریسته نمی باشند . یک روش برای تحریک اتم های گاز و تولید نور عبور دادن الکترون های پر انرژی از داخل گاز می باشد . که در برخورد با اتم های خنثی گاز سبب تحریک ان ها می شود مقدار گاز را مطابق شکل زیر در داخل لوله بسته با سه الکترود و دو انتها در نظر می گیرند . با عبور دادن جریان برق از داخل فیلاما ن f   انرا گرم می کنیم . که در نتیجه الکترون ساطع میکند الکترون ساطع شده به طرف شبکه G   که نسبت به F  دارای ولتاژمثبت تری است. کشیده میشود و کسب انرژی حرکتی میکند .
این الکترون ها فاصله بین آند  و شبکه را با سرعت ثابت طی میکنند و به اتم های خنثی گاز برخورد میکنند اگر ولتاژ کم باشد سرعت الکترون ها کم می باشد و در بر خورد با اتم های گاز انرژی کافی برای تحریک اتم های گاز را دارد و نور در طول موج های معینی از گاز ساطع میشود اگر ولتاژ را بیشتر افزایش دهیم نور در طول موجهای بیشتری ساطع میشود افزایش بیشتر ولتاژ باعث یونیزه شدن گاز یعنی ازاد شدن الکترون های مدار خارجی اتم ها میشود و نور در طول موج های متعددی تولید میکند .
در لامپ های عملی شبکه را حذف مي کنند و تنها از دو الکترود استفاده میشود . در نوعی دیگر از لامپ های تخلیه در گاز که لامپ با کاتد گرم نامیده می شود کاتد در اثر گرم شدن الکترون ساطع می کند و بلا خره به یونیزه شدن گاز می انجامد . در لامپ های تخلیه با کاتد سرد کاتدی که الکترون ساطع کند وجود ندارد و از ولتاژ زیاد برای برقرار کرد ن جرقه و یونیزه سازی استفاده میشود .
پس خلاصه می شود
در لامپ های تخلیه  الکتريکی در گاز و گاز داخل لوله ای به ترتیب یونیزه میشود و ولتاژ بین دو الکترود که در انتهای دو الکترود قرار دارد جریانی در لوله برقرار میکند الکترون ها در عبور از اختلاف پتانسیل. انرژی حرکتی به دست می اورند که در برخورد با اتم های دیگر سبب تحریک و تولید نور میشود طیف تشعشعی تابع نوع گاز – فشار و حرارت ان و شریط الکتریکی ان می باشد. گاز های که تا کنون به کار رفته است عبارت اند از:
بخار جیوه – بخار سدیم – کادیم- نئون و گاز کربنیک -
لامپ های تخلیه در گاز را نمیتوان بطور مستقیم از منبع تغذیه کرد . دلیل این امر این است که با افزایش یونزاسیون مقاومت الکتريکی لامپ کاهش پیدا میکند که موجب افزایش بیشتر جریان میشود اگر از لامپ به گونه ای محافظت شود لامپ در مدت کمتر از یک ثانیه خواهد سوخت .وسایلی که بدین منظور استفاده میشود یک مقاومت یا امپدانس سری شده است که به نام چوک یا بالاست معروف می باشد.
برای لامپ های تخليه در گاز که با جریان مستقیم کار میکنند باید از مقاومت استفاده شود که ضایعاتی همراه دارد . برای جریان متناوب از خود القا(سلف) استفاده میشود که ضایعات توان کمتری را دارا می باشد.
+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:7  توسط 66  | 

 
  • قدرت مصرفی كل مصرف كننده هايی كه از تابلو تغذيه میشود را محاسبه كنيد.
  • برای روشنايى و پريزها خطوط جداگانه
  • معمولاً هر 1000تا 1500 وات مصرفی روشنايی يك خط
  • پريزها برای تغذيه مصرف كننده های با توان كم ، چندين پريز از يك خط تغذيه شود.
  • مصرف كننده با وات بالا خط جدا گانه مثل كولر يا آبگرمكن برقی و...
  • حداقل سطح مقطع سيمها روشنايی 5/1 و پريزها 5/2 ميلیمتر مربع
  • آمپر كليدها وفيوزها و كليد مينياتوری دقيقاً محاسبه و متناسب مصرف كننده
  • سطح مقطع كابلها وسيمها ورودی محاسبه شود.


پس از مشخص شدن ليست وسايل داخل تابلو نقشه تابلو را رسم و مونتاژ میكنيم .  میتوان در بازار تابلوی آماده تهيه يا سفارش داد.  

تذكر: در بعضی كارخانجات خصوصاً منازل ديدم كه آمپر فيوز و كليد مينياتوری تابلو   فرعی باتابلو اصلی يكی است .كه موقع اتصالی تابلو اصلی وفرعی همزمان قطعمی شوند.    

حتماً مقدار آمپر فيوز وكليد مينياتوری تابلو فرعی كمتر از تابلو اصلی باشد.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:6  توسط 66  | 

گروه مصرف کننده ساختمان اداری بیمارستان ها مراکز تجاری
روشنایی 0.85---0.95 0.7---0.9 0.85---0.95
تهویه مطبوع 1 0.9---1 0.9---1
آشپزخانه 0.5---0.85 0.6---0.8 0.6---0.8
آسانسور/پله برقی 0.7---1 0.5---1 0.7---1
پریزها 0.1---0.15 0.1---0.2 0.2

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:6  توسط 66  | 

با زياد شدن جوامع بشري و ايجاد ساختمانها و برجهاي بلند و آسمان‌خراشها درمناطق مرتفع و تحولات شگرد در صنعت‌ ساخت و ساز، تكامل و پيشرف دراين صنعت بوجود آمده و همچنين رشد روزافزون و سريع تكنولوژي، ارايه و ابداع روشهاي جديد در صنايع مي‌توان از تحديد خطرات و حوادث طبيعي گوناگون در محيط فعاليت زندگي ما (محيط كار، منازل و ...) بطور كلي در همه‌جا جلوگيري كنيم. خطراتي كه بر اثر ساخت و ساز درمناطق مرتفع ساختمانها راتحديد مي‌كند مهندسان و كارفرمايان را متوجه اين حوادث و صدمات كرده كه با هماهنگي متخصصان روبه كاهش است. اين واقعيت را نمايانگر مي‌سازيم كه نياز شديد و اصولي به فراگيري و رعايت كامل ايمني و حفظ ساختمانها در مناطق مرتفع را داريم تا خود و ديگران را در برابر اين همه خطرات و سوانح طبيعي حفظ كنيم واين معلومات و راه و روش صحيح براي پيشگيري و چاره‌انديشي را فرا گيريم كه از اين حوادث طبيعي (صاعقه) جان سالم بدر ببريم. صاعقه چيست و چگونه بوجود مي‌آيد؟ صاعقه يكي از اصرارآميز‌ترين پديده‌هاي خلقت است كه در عين زيبايي بسيار مخرب بوده و در طول تاريخ زندگي انسان، موجب ضرر و زيان مالي و جاني بسياري شده است صاعقه از تخليه الكترواستاتيكي ميان ابر و زمين بوجود مي‌آيد. در ابرهايي از نوع كومولونيمبوس (كه گاه تا 18 كيلومتر ارتفاع و چندين كيلومتر عرض دارند) طي مراحلي ذرات آب داراي بار منفي و ذرات يخ داراي بار مثبت شده بطوري كه (عموماً) بارهاي منفي در لايه‌هاي زيرين و بارهاي مثبت در بخشهاي فوقاني ابر متمركز مي‌شوند. در اين حالت بارهاي مثبت سطح زمين نيز، در زير سايه ابر مجتمع مي‌شوند.

با افزايش پتانسيل الكتريكي ابر نسبت به زمين، يك جريان پيشرو از الكترونها با حركتي نردباني شكل از ابر به سوي زمين (downward leader) سرازير شده و كانال اوليه صاعقه را شكل مي‌دهد. هواي اطراف اين كانال كاملاً‌ يونيزه است اين پلكان كه گاه طول شاخه‌هاي آن به 50 متر مي‌رسد، بار زيادي را در نوك پليكان با خود حمل كرده و موجب افزايش شدت ميدان الكتريكي جو وشكست مقاومت عايقي هوا مي‌شود. در اين حالت سرعت حركت كانال نزديك شونده به زمين بيش از 300km/s است. در اين زمان با افزايش شدت ميدان الكتريكي در سطح زمين، يك جريان الكتريكي بالا‌رونده (upward leader) نيز از زمين به سوي ابر پيش مي‌رود پس از اصابت اين دو پليكان به يكديگر، كانال جريان بسته شده و ضربه اصلي صاعقه (retum stroke) اتفاق مي‌افتد و بدين ترتيب جهت خنثي بارهاي ابر و زمين، جريان بسيار زيادي در مدت كوتاهي در اين كانال برقرار مي‌شود. صاعقه در انواع مختلف اتفاق مي‌افتد كه متداولترين آنها (90 درصد) از نوع صاعقه منفي نزولي و خطرناكترين آنها نوع مثبت صعودي است.

صدمات
اصولاً بشر تا قبل از تجربه شخصي حدود سانحه، كمتر به دنبال علت وقوع آنها بوده است اما خسارات زياد و مكرر از اثرات اوليه (ضربه‌هاي مستقيم) و ثانويه (ميدانهاي الكترومغناطيسي) صاعقه امروز به حدي رسيده است كه توجه و راهكارهاي جدي را مي‌طلبد شايد اولين دليل بروز اين حوادث، عدم آگاهي از روشهاي صحيح حفاظت است مضافاً اينكه اغلب بدليل ادعاهاي واهي برخي فروشندگان صاعقه‌گير تصور مي‌شود كه داشتن يك صاعقه‌گير در خارج ساختمان (كه تنها از وقوع جرقه و تخريب فيزيكي ساختمان جلوگيري مي كند) مي‌تواند كليه تجهيزات برقي و الكترونيكي داخل ساختمان رانيز حفاظت كند، در صورتي كه چنين نيست.
ظرف ده سال گذشته استانداردهاي جهاني به ما اين امكانات را داده‌اندكه طراحيهاي مناسبي با رعايت اصول قوانين emc انجام دهيم. امروزه وسايل و تجهيزاتي كه براي يك زندگي ساده تدارك ديده شده پر از مدارهاي الكترونيكي است. وسايل خانگي، كامپيوتر، فاكس، بي‌سيم، تلويزيون، تلفن، شبكه‌هاي اطلاعاتي جهاني،‌همه و همه از مدارهاي الكترونيكي ساخته شده‌اند كه گران بوده و تعميرات آنها نيز آسان نيست و گاهي از خط خارج شدن آنها مصادف با خسارتهاي غيرقابل جبران است.
عواملي را كه مي‌توانند شديداً تجهيزات نامبرده بالا يا بطور كلي هر وسيله ديگري را كه مدارهاي الكترونيكي در آنها به كار رفته باشد به خطر انداخته يا غيرقابل استفاده كنند، عبارتند از:

كوپلاژ مقاومتي
وقتي كه صاعقه به ساختماني ضربه مي‌زند جرياني كه به زمين تخليه مي‌شد پتانسيل زمين را در سيستم‌هاي برق و ديتا، تا چند صد كيلوولت افزايش مي‌دهد. اين امر موجب مي‌شود بخشي از جريان صاعقه از طريق هاديهاي ورودي- خروجي، به ساختمانهاي ديگر منتقل شود.

كوپلاژ سلفي (مغناطيسي)
عبور جريان صاعقه از يك هادي و يا از كانال تخليه خود، ايجاد يك ميدان مغناطيسي مي‌كند. وقتي كه خطوط ميدان، هاديهايي را كه تشكيل لوپ داده‌اند قطع كند، در آنها ولتاژي معادل چند ده كيلوولت القاء مي‌شود.

كوپلاژ خازني (الكتريكي)
كانال صاعقه در نزديكي نقطه تخليه، يك ميدان شديد الكتريكي ايجاد مي‌كند. كابلها و هاديها مانند خازن و هوا نيز عايق دي‌الكتريك آنهاست. بدين صورت عليرغم عدم برخورد صاعقه به ساختمان كابلها تحت يك ولتاژ بالا قرار مي‌گيرند.

اصول حفاظت از صاعقه
حفاظت يك ساختمان بطور كامل شامل موارد زير مي‌شود:
حفاظت جلد خارجي ساختمان از ضربه‌هاي مستقيم صاعقه.
حفاظت داخلي و تجهيزات نصب شده در ساختمان در مقابل آثار ثانويه صاعقه

الف- حفاظت جلد خارجي ساختمان
منظور از حفاظت خارجي، حفظ بدنه و استراكچر ساختمان از آتش‌سوزي و انهدام در اثر اصابت صاعقه است. كليه تجهيزاتي كه جهت جذب وهدايت صاعقه از پشت بام تا شبكه زمين نصب مي‌شوند طبق استاندارد BS6651, NFC17-102, NFC17-100, DINVDEO185 و NFPA780 و IEC61024 شناسايي مي‌شود.

ب- حفاظت تجهيزات نصب شده در داخل ساختمان
توسعه كاربرد سيستمهاي الكترونيكي درجهان، موجب افزايش شديد آمار صدمات وارده به اين دستگاهها در اثر صاعقه و اضافه ولتاژهاي ناشي از آن شده است. لازم به ذكر است كه تنها بخشي از اضافه ولتاژها در اثر صاعقه بوده و بخش عمده آنها ناشي از عمليات سوئيچينگ و حوادث تغذيه است. براي اين بخش از حفاظت، كاهش اثر ميدانهاي الكترومغناطيسي ناشي از صاعقه، مدنظر قرار مي‌گيرد.
پس از برخورد صاعقه به زمين يا ساختمان، وسايل الكترونيكي داخل ساختمانهايي كه شعاع 1/5 كيلومتري از محل برخورد و در محدوده ميدان الكترومغناطيسي ايجاد شده قرار دارند در معرض خطر خواهند بود.
حفاظت موثر اين تجهيزات در مقابل ولتاژهاي القايي حاصله وقتي امكان‌پذير است كه كليه سيستمهاي حفاظت داخلي همراه با حفاظت خارجي ساختمان تماماً نصب شده باشند.
حفاظت داخلي از صاعقه عبارت است از تهيه وسايلي كه به كمك آنها بتوان اثر ولتاژهاي القائي حاصله از جريان‌هاي صاعقه را، بر روي تجهيزات داخل ساختمان خنثي كرد.

برق‌گير يا رساناي آذرخش
برق‌گيري يا رساناي آذرخش، ساختمان‌هاي بلند را از يورش آذرخش (صاعقه) مصون مي‌دارد. يك رساناي آذرخش ازيك نوار مسي كلفت تشكيل شده است كه نوك‌هاي فلزي تيزي دارند و در بالاي بلندترين قسمت ساختمان كار گذاشته مي‌شود. اين نوار را به تيغه فلزي بزرگي كه در اعماق مرطوب زمين زير ساختمان مدفون گشته است متصل مي‌كنند.
اين رسانا مسيري را براي شارش بار الكتريكي از بالاي ساختمان به زمين فراهم مي‌كند.
نشست تدريجي بار مثبت از نوكها (تخليه الكتريكي از نوك‌هاي تيز بهتر انجام مي‌شود) بسوي ابرها و شارش الكترونها از برق‌گير به زمين، از انباشته شدن انبوه بار روي بلندترين بخشهاي ساختمان جلوگيري مي‌كند. اگر اين تخليه الكتريكي از نوكها و از طريق برق‌گيري صورت نگيرد تخليه ناگهاني بار «آذرخش» صورت خواهد گرفت.
شارش ناگهاني و بسيار عظيم بار كه آذرخش روي مي‌دهد آن قدر انرژي دارد كه مي‌تواند خسارتهاي جدي به ساختمان وارد كند.

راهنماي استفاده از LOM در شبكه زمين سطحي
- كانالي به عرض 30-20 سانتيمتر و عمق 75 سانتي‌متر به طول مورد نظر حفر كنيد. اگر عمق نفوذ يخ‌زدگي خاك بيشتر از 75 سانتي‌متر باشد بايد كانال عميقتر و تا زير لايه يخ‌زدگي حفاري شود كف كانال را به ضخامت 10 سانتي‌متر از LOM مخلوط پر كنيد.
- سيم يا تسمه مسي را روي اين لايه بخوابانيد.
- روي سيم را به ضخامت 10 سانتي‌متر با مخلوط LOM بپوشانيد مراقب باشيد كه هادي بطور كامل پوشانده شود و اگر هادي پوشانده نشد ضخامت LOM را افزايش دهيد. بقيه كانال را با خاك پر كنيد.
- با در نظر گرفتن حجم حفاري وشرايط فوق براي هر متر طول حداقل به سه كيسه LOM نياز خواهد بود باتغيير ابعاد كانال يا ضخامت LOM مصرفي مقدار مورد LOM تغيير مي‌كند.

راهنماي استفاده در نصب ميله ارت (شبكه زمين عمودي)
- حفره‌‌هاي به قطر 15-25 سانتي‌متر و به عمق 15 سانتي‌متر كمتر از طول ميله ارت حفر كنيد.
- ميله ارت را در وسط حفره طوري بكوبيد كه سر ميله ارت 10 سانتي‌متر پايين‌تر از لبه حفره واقع مي‌شود.
- مخلوط LOM را پيرامون ميله تخليه كنيد و اين كار را تا 20 سانتي‌متر پايين‌تر از لبه فوقاتي ميله ارت ادامه دهيد.
- اتصالات لازم را به ميله ارت انجام دهيد بعد دريچه بازديد را نصب كنيد و يا حفره را كاملاً پر كنيد.
- در حين پر كردن حفره ضروري است هر يك متر كه با LOM پر مي‌شود مقداري از آب داخل حفره تخليه شود اين عمل فشردگي و چسبندگي لايه‌ها را به ميله ارت افزايش مي‌دهد.
- در اين حالت براي هر متر عمق حفره بين يك تا سه كيسه LOM مورد نياز است.

راهنماي استفاده در نصب صفحه مسي چاه ارت (شبكه زمين سنتي)
- حفره‌اي به قطر تقريبي 50 سانتي‌متر به عمق مورد نياز حفر كنيد.
سيم ارت يا تسمه مسي را حداقل در دو نقطه توسط روش cadweld به صفحه متصل كنيد.
- صفحه ارت را به صورت عمودي در انتهاي حفره قرار دهيد.
- مخلوط lom را در داخل چاه طوري تخليه كنيد كه ضمن فشردگي مناسب تا 20 سانتي‌متر بالاي سطح صفحه را بپوشاند.
- براي پر كردن مابقي حفره lom را به نسبت يك به سه با خاك حفره يا خاك رس مخلوط كرده و حفره را با مخلوط فوق پر كنيد.
- در صورت نياز دريچه بازديد را نصب كرده و هادي بيرون آمده از چاه را با هادي سيستم زمين متصل كنيد.
- براي فشردگي بيشتر خاك اطراف هادي صفحه و كيفيت مناسبتر پس از هر متر كه با مخلوط lom پر مي‌شود مقدار مناسب آب اضافه كنيد.
براي پر كردن چاه ارت با مشخصات فوق در يك متر اوليه 10 كيسه و براي هر متر بعد از آن براي مخلوط كردن با خاك حفره سه كيسه lom مورد نياز است.

توجه 1- اگر شبكه سطحي، حفره ميله يا چاه ارت در مسير حركت سفره‌هاي آب زيرزميني يا فاضلاب آب باران باشد بايد كف آن توسط سيمان يا مخلوط سيمان و lom بتونه كاري شود كه مخلوط حاضر توسط آب جاري شسته نشود.

توجه 2- در جايي كه مقاومت مخصوص خاك (P) كمتر از m20 اهم باشد چنانچه قصد داريد lom را با خاك مخلوط و مصرف كنيد مناسبترين نوع تركيب از نظر تكنيكي و اقتصادي با نسبت حجمي به شرح زير پيشنهاد مي‌شود:
60 درصد خاك
30 درصد lom
10 درصد آب
براي مخلوط كردن صحيح اقلام فوق بايد موارد به ترتيب زير با هم مخلوط شوند تا بهترين نتيجه از يك مخلوط يكنواخت حاصل شود.
اول lom، دوم خاك، سوم آب

توجه 3- لطفاً عنايت فرماييد تاثير نهايي مواد كاهنده بصورت فوري قابل حصول نيست و براي دسترسي به نتيجه قطعي بايد بين يك تا شش ماه صبر و تحمل داشته باشيد.
توجه 4- بازديد و تست دوره‌اي سيستم زمين را فراموش نفرماييد نصب دريچه بازديد كار تست و بازرسي دوره‌اي را تسهيل مي‌كند.

توجه 5- محل اتصال الكتريكي سيستم زمين به شبكه ارت سطحي يا چاه ارت زير زمين معمولاً به عنوان نقطه آزمايش سيستم در داخل دريچه بازديد قرار دارد محل تماس الكتريكي توسط نوار چسب عايق ضد خوردگي، خمير هادي حفاظت شود.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:6  توسط 66  | 

 

معمولی ترین لامپ های رشته دار لامپ های معمولی میباشند که در منازل مورد استفاده قرار می گیرد . نوع دیگری از لامپ های رشته ای میباشد که به لامپ های منعکس کننده معروف می باشند که شار را در جهت معینی افزایش میدهند .نوع سوم این لامپ ها لامپ های هالوژنی می باشد در لامپ های هالوژنی برای جلو گیری از تبخیر سطحی تنگستن مقدار کمی از یکی از گاز های ها لوژن مثل ید یا برم را به داخل لامپ اضافه می کنند.
در مجاورت حباب لامپ که در درجه حرارت ( حدود 250 درجه سانتی گراد ) است تنگستن تبخیر شده با ید ترکیب میشود و یدور تنگستن را به وجود میا ورد . در حوالی رشته که درجه حرارت بیشتری دارد یدور تنگستن تجزیه شده و تنگستن روی رشته می نشیند . در این لامپ ها به علت کم بودن نگرانی از تبخیر تنگستن میتوان رشته را در درجه حرارت بالا تری به کار برد . به این ترتیب لامپ های هالوژنی با توان 10 کیلو وات با بهره نوری در حدود 25 لومن بر وات و عمری حدود دو برابر لامپ های رشته دار معمولی توليد می کند.



نكته: البته تنگستن تجزیه شده همیشه در قسمتی از رشته که نازک شده است نمی نشيند و بلا خره لامپ در اثر تبخیر سطحی خواهد سوخت . و به منظور داشتن حرارت 250 درجه در
این حوالی حباب لامپ را باریک و دراز به شکل لوله می سازند .
(توليد نور در اثر عبور جريان برق در گاز ها ( تخليه الکتريکی در گاز ها
گاز ها در حالت عادی هادی الکتریسته نمی باشند . یک روش برای تحریک اتم های گاز و تولید نور عبور دادن الکترون های پر انرژی از داخل گاز می باشد . که در برخورد با اتم های خنثی گاز سبب تحریک ان ها می شود مقدار گاز را مطابق شکل زیر در داخل لوله بسته با سه الکترود و دو انتها در نظر می گیرند . با عبور دادن جریان برق از داخل فیلاما ن لامپ های سديم به دو دسته معمولا تقسیم می شود ( 1/لامپ سدیم با فشار زیاد 2/ لامپ سدیم با فشارکم(
لامپ سديم با فشار كم: لامپ سدیم با فشار کم شامل یک لوله داخلی با دو الکترو د اصلی می باشد که در آن قوص الکتريکی ایجاد می شود با تو جه به این که درجه حرارت این لوله زیاد و در حدود 270 می باشد برای جلو گیری از اتلاف حرارتی از یک حباب خارجی استفاده می شودکه در ان خلاء ایجاد شده وسطح داخلی ان با یک ماده منعکس کننده اشعه حرارتی مادون قرمز مثل اکسید انيدیوم پوشیده شده است . برای این که لوله داخلی که برای طول قوس الکتریکی بلند ساخته می شود جای زیادی را نگیرد ان را به شکل u می سازند با این عمل هم حجم لامپ کم می شود و هم از تلفات انرژی حرارتی جلو گیری میشود .
گازداخل لامپ ذرات سدیم که در درجه حرارت کمتر از 98 درجه سانتی گراد به صورت جامد می باشد . در داخل لوله تخلیه قرار دارد و نظر بر این که فشار تبخیر سدیم خیلی کم می باشد لذا لازم است مقداری گاز خنثی جهت شروع یونیزاسیون و گرم کردن سدیم داخل لوله قرار دهند بدین منظور از گاز نئون استفاده می شود و مقداری ارگون حدود یک در صد جهت پایین اوردن فشار استارت به گاز نئون افزوده می شود .
برای این که لامپ های سد یم بهره کامل را داشته باشد فشار بخار سدیم باید در میلیمتر جیوه و درجه حرارت 500درجه فارنهایت باشد و چنان چه این مقدار تغییر پیدا کند ضریب بهره نوری به مقدار زیادی کاهش پیدا می کند. مدت زمانی که لازم است لامپ به صورت کامل روشن شود و نور نهايی خود را تولید کند بین 7 تا 15 دقیقه میباشد . که بستگی به نوع لامپ دارد.
الکترودها : از رشته مارپیچ تنگستن درست شده است که روی ان مقداری اکسید فلز که دارای قدرت صدور الکترون به طوراسان می باشد قرار گرفته است .
طيف نوری لامپ سديم :
در لامپ های سدیم با فشار کم حدود 5/99 در صد از تشعشعات مرئی در ناحیه زرد رنگ با طول موج 589 تا 6/589 نانو متر می باشد . در شروع کار ( زمان استارت ) نور قرمز تولید شده ناشی از تخليه ای در گاز نئون می باشد که کم کم به نور زرد ناشی از بخار سدیم تبدیل می شود .
اتصال لامپ به شبکه به طور کلی در لامپ های تخلیه پس از روشن شدن مقاومت گاز لامپ کاهش پیدا کرده و در نتیجه جریان لامپ افزایش پیدا می کند جهت کنترل و جلو گیری از افزایش جریان می توان از چوک ( با لاست ) یا ترانسفور ماتور با پرا کندگی زیاد استفاده شود در شکل زیر نحوه روشن کردن و اتصال به شبکه لامپ سدیم نشان داده شده است .
اگناتور ( یک استارت می باشد که با دو سر لامپ سدیم موازی بسته شده است و برای راه اندازی لامپ در لحظه اول مورد استفاده قرار می گیرد )
مزایا و موارد استعمال لامپ سدیم با فشار کم
1- نوری که لامپ های سدیم تولید میکنند زرد رنگ می باشد که چشم انسان بیشترین حساسیت را به ان دارد .
2- حشرات به نور ابی علاقه داشته و از نور زرد فرار میکنند به همین دلیل در تابستان حشرات به دور این لامپ ها جمع نمی شوند.
3- درخشندگی لامپ در حدود 10 استیلب می باشد لذا باعث چشم زدگی نمی شود.
4- در صورتی که به هر دلیل لامپ را خاموش کنیم می توان در سرعت کم تر از یک دقیقه ان را روشن کرد .
5- ضریب بهره نوری بالا و نور لامپ در تمام عمر لامپ تقریبا ثابت می باشد .
این لامپ ها بیشتر د رخیابانها – جاده های اصلی – تقاطع ها – راه اهن ها – فرودگاه ها و کارخانجات و در جاهای که رنگ نور مطرح نیست و قدرت تمیز و تشخیص مورد نظر است مورد استفاده قرار می گیرد.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:5  توسط 66  | 

 

برخي ازسيستمهاي حساس ومهم در منازل و اماكن عمومي يا در ادارات و كارخانه هابايد هنگام قطع برق شهر به طريقي از يك منبع تغذيه ديگر استفاده كنند و به كار خود ادامه دهند.منابع تغذيه اي كه  وظيفه تامين برق را در هنگام قطع برق شبكه به عهده دارند منابع تغذيه اضطراري ناميده ميشوند. منابع تغذيه اضطراري بسته به سيستم مورد تغذيه خصوصيات متفاوتي دارند.برخي از منابع برق اضطراري كه از باطري براي توليد انرژي الكتريكي استفاده مي كنند فقط قادرند براي مدت محدودي بسته به مقدار مصرف سيستم مورد تغذيه برق آن تامين نمايند ولي برخي ديگر قادرند به مدت نا محدودي تا زمان وصل شدن مجدد برق شهر برق اضطراري را تامين كنند.اينگونه سيتمها داراي موتور مكانيكي وژنراتور ميباشند وتا زماني كه سوخت موتور مكانيكي تامين شود ميتوانند در محدوده قدرت نامي ژنراتور برق اضطراري را تامين نمايند.خصوصيت ديگري كه منابع تغذيه اضطراري را از يكديگر متمايز ميكند مدت زماني است كه طول ميكشد تا بعد از قطع برق شبكه برق اضطراري وصل شود. برخي از اين سيستمها قادرند بدون تاخير بعد از قطع برق شهر در عرض چند ميلي ثانيه برق اضطراري را وصل نمايند.



اينگونه منابع تغذيه اضطراري كه معمولا انرژي خود را از باطري تامين ميكنند در مكانهايي مانند اتاق عمل- اتاق كامپيوتر – سيستمهاي نظامي و غيره مورد استفاده قرار ميگيرند.در مقابل سيستمهايي كه از موتور مكانيكي و مولد براي توليد برق اضطراري استفاده ميكنند بدليل اينكه موتور مكانيكي براي راه اندازي نيازمند زمان است داراي تاخير در وصل برق اضطراري خواهند بود.لذا با توجه به خصوصيات و نياز محل مورد استفاده، يكي از اين سيستمها يا تركيبي از هر دو نوع ممكن است استفاده گردد. در صفحه بعد نمونه هايي از  منابع تغذيه اضطراري و محل مورد استفاده آنها ذكر ميگردد:

برق اضطراري سيستمهاي ايمني وحفاظتي

در سيستمهاي ايمني وحفاظتي نظير سيستم اعلام حريق و سيستم تلويزيون مدار بسته ياسيستم اعلام سرقت برق اضطراري جزو ضروريات سيستم بوده و بسيار مهم ميباشد.معمولا چون ولتاژ تغذيه اين سيستمها ولتاژ پايين dc ودر حدود 6 و 12و 24 ولت ميباشد لذا در خود تابلوي اصلي سيستم محلي براي باطريهاي اضطراري در نظر ميگيرند.اين باطريها به مدار الكترونيكي تابلو وصل ميگردند و در زمان وجود برق شهر توسط سيستم شارژ وآماده نگه داشته ميشوند وهنگام قطع برق شبكه بدون تاخير وارد مدار شده وبرق اضطراري سيستم را تامين مينمايند. مدت زمان تامين برق اضطراري بستگي به ظرفيت باطريهاي مورد استفاده و مصرف سيستم دارد.مشخصات باطري مورد نياز معمولا در راهنماي پانل اصلي ذكر ميگردد.در صورت طولاني شدن زمان قطع برق شهر در اينگونه سيستمها بايد قبل از اينكه شارژ باطري پايين بيايد و باطري كارآيي خود را از دست بدهد آنرا با باطري پر تعويض نمود.

برق اضطراري براي كامپيوترها

براي كامپيوترها وساير دستگاههايي كه در صورت قطع برق امكان از دست رفتن اطلاعات د رآنها وجود دارد يا براي مواردي مانند تجهيزات اتاق عمل كه نياز  به اعمال برق اضطراري به سيستم بدون تاخير ميباشد از منابع تغذيه اضطراري بدون تاخير(UPS) (uninterruptable power systems) استفاده ميگردد. در UPS ها برق باطريها توسط مدار اينورتر به ولتاژ 220 V AC تبديل ميگرددو در صورت قطع  برق شهر در عرض چند ميلي ثانيه در اختيار سيستم قرار ميگيرد.UPS در توانهاي متفاوتي نظير 300 -700 -1000 -6000 ولت آمپر ساخته ميشوند وبايد با توجه به تعداد ومصرف دستگاههايي كه بايد تغذيه شوند UPS با توان مناسب را انتخاب نمود . البته علاوه بر محدوديتي كه توان خروجيUPS در تعداد دستگاههاي مورد تغذيه ايجاد ميكند محدوديتي نيز در زمان تغذيه دستگاهها وجود دارد.هر چه ظرفيت باطريها بيشتر باشد مدت طولاني تري ميتوان دستگاهها را تغذيه كرد.  
باطريها بطور جداگانه يا در كابينتهاي خاصي (BATTERY PACK) قرار ميگيرد و به ترمينال ورودي DC در پشت UPS وصل مي شوند. UPS ها با ولتاژ ,12 V DC   24و48 تغذيه مي شوند. براي ولتاژ 24 ولت دو باطري 12 ولت و براي 48 ولت 4 باطري كاملا يكسان را با هم سري كرده و به UPS وصل مي كنند. معمولاًUPS ها داراي تنظيم كننده اتوماتيك ولتاژ( AVR))  (AUTOMATIC VOLTAGE REGULATION مي باشندتا در هنگام وجود برق شبكه عمل تثبيت ولتاژ را نيز در محدوده مشخصي انجام دهند. مقدار محدوده تثبيت ولتاژ معمولاٌ بصورت درصد در مشخصات فني UPS ذكر مي گردد .هنگامي كه ولتاژ ورودي پايين است AVR ولتاژ را بالا مي برد(BOOST) و هنگامي كه ولتاژ ورودي بالا است AVR ولتاژ را پايين مي آورد             (BUCK). در UPS هاي جديد يك پورت RS 232 وجود دارد كه در پشت UPS قرار ميگيرد و  از آن جهت اتصال به كامپيوتر استفاده مي شود . بعد از وصل كردن UPS به كامپيوتر مي توان با نرم افزار ارائه شده به همراه آن تنظيمات مربوطه را انجام داد. كانكتور اتصال به برق شهر نيز در پشت UPS قرار مي گيرد و خروجيهاي برق 220 ولت از پريزهاي پشت UPS گرفته مي شود .

در پانل جلوي UPS معمولا نشانگرهاي زير وود دارد:

  • ·  نشانگر مقدار شارژ باطري 
  • ·  نشانگر مقدار بار
  • ·  نشانگر اضافه بار
  • ·  نشانگر اضافه ولتاژ در شبكه
  • ·  نشانگر استفاده از برق باطري
  • ·  نشانگر  استفاده از  برق شبكه
  • ·  نشانگر تعويض باطري
  • ·  نشانگر كم بودن ولتاژ در شبكه
  • ·  دگمه خاموش
  • ·  دگمه روشن و تست
+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:5  توسط 66  | 

 

آیفونهای تصویری (video door phone) سیستمهای ارتباطی هستند که مانند آیفونهای معمولی ارتباط صوتی بین  فرد مراجعه کننده و افراد داخل یک ساختمان را برقرار می کند. علاوه بر آن قادرند تصویر فرد مراجعه کننده را نیز بر روی مانیتور گوشی داخل ساختمان نمایش دهند در صورت لزوم حتی می توانند تصاویر افراد مراجعه کننده را با کمک تجهیزات جانبی ضبط نمايند.آیفونهای تصویری  بسته به نوع تصویری که پخش می کنند به دو صورت رنگی وسیاه و سفید در بازار ارائه شده اند . اجزای اصلی یک سیستم آیفون تصویری  به صورت زیر می باشد :



  •  پانل جلوی در(door panel) (camera)
  • گوشی یا مانیتور ( monitor)  ( video phone)
  • منبع تغذیه  (power source )
  • قفل در باز کن (door  release)(door switch)
  • پانل جلوی در (camera)

این پانل ها در دو نوع رنگی و سیاه و سفید می باشند معمولاً نوع رنگی با علامت سه عدد بیضی به رنگهای قرمز و زرد  و آبی روی پانل مشخص می شوند.قسمتهای اصلی پانل به صورت زیر است:

1.       صفحه فلزی(panel):که از جنس آلومینیوم آلياژي می باشدو دور آن لاستیکی برای جلوگیری از نفوذ آب   قرار داده شده است.

2. شیشه حفاظ  لنز (camera window):برای جلوگیری از تاثیر مستقیم عوامل جوی روی لنز یا دستکاری لنز

3.     دوربین آیفون(ccd camera): از نوع CCD  میباشد و وظیفه دریافت تصویر را بر عهده دارد دارای دو نوع رنگی و سیاه وسفید است.لنز آن از نوع فیکس می باشد و زاویه ديد تنها با تغيير مکان دوربین قابل تنظیم است.

4.   LED های دریافت کننده نور مادون قرمز(infrared led): برای این است که دوربین بتواند در شب نیز دید داشته باشد.

5.        بلند گو برای پخش صدا (speaker)

6.   شستی زنگ به تعداد طبقات(resident call button)

7.      میکروفون برای انتقال  صدا به گوشی( microphone)

8.  پیچهای مخصوص که برای باز و بسته  کردن نیاز به آچار آلن دارد.((tamper proof screw

9.    پیچهای تنظیم زاویه دوربین (angular adjust)( angel control)   

10.        ترمینالهای اتصال سیم مانيتور درپشت پانل( resident videophone connector)

11.           سيم اتصال تغذيه 12 ولت dc (power connection )

12.      سيم اتصال به در بازكن ( door opener cable)((release connection wire

گوشی (Monitor) (Video phone)

گوشی نیز به دوصورت رنگی وسیاه و سفید  وجود دارد.معمولاً گوشی های سیاه و سفید برای نمایش تصویر از لامپ تصویر استفاه می کنند و قسمت نمایش تصویر گوشی های رنگی به صورت LCD  می باشد.

منبع تغذيه (power source )

منابع تغذيه مورد استفاده در سيستم آيفون تصويري مانند منبع تغذيه آيفونهاي معمولي ميباشدو داراي خروجي 12 ولت dc  وac است. خروجيac  براي تغذيه در بازكن استفاده ميگردد و خروجي dc مستقيما به سيمهاي آبي و قرمز پشت پانل وصل ميگردد.در پانلهاي يك طبقه اي كه فقط دو سيم مشكي براي اتصال تغذيه وجود دارد اتصال آن به منبع dc  يا ac فرقي نميكند.

 

قفل در بازكن (door release)(door lock)

دو نوع در بازكن در آيفونها استفاده ميشود.يك نوع با زنجير است كه از انرژي ذخيره شده فنر براي آزاد كردن زبانه در استفاده ميكند. نوع دوم نيازي به زنجير ندارد وتوسط يك مگنت زبانه به داخل كشيده شده و در باز ميشود.در بازكنهاي نوع دوم معمولا از منبع dc  12ولت يك آمپري تغذيه ميشوند.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:3  توسط 66  | 

در ساختمان هایی که تعداد زیادی گیرنده تلویزیونی وجود دارد (مانند هتل ها و برج های مسکونی) در صورتی که بخواهیم برای هر گیرنده یک آنتن مجزا نصب نماییم مشکلاتی مانند موارد ذکر شده در زیر بروز خواهند کرد:
  • محدودیت فضایی پشت بام برای نصب تعداد زیادی آنتن
  • اثر انعکاسی و القا یی آنتن ها بر یکدیگر
  • هزینه بالای نصب آنتن برای تک تک گیرنده ها و سیم کشی آنتن تا گیرنده
  • از بین رفتن زیبایی ظاهر ساختمان و به وجود آمدن جنگلی از آنتن ها
  • حجم بالای سیم کشی آنتن ها تا گیرنده نیز مشکلاتی به وجود خواهد آورد


با توجه به موارد ذکر شده راه کار پیشنهادی این است که از یک آنتن برای تمام گیرنده ها استفاده گردد و چون سیگنال در یافت شده توسط این آنتن برای تمام گیرنده ها کافی نخواهد بود لذا از تجهیزاتی برای افزایش مقدار سیگنال و توزیع آن بین گیرنده ها استفاده می کنیم.عملی کردن این راه کار با استفاده از تجهیزات سیستم ها ی آنتن مرکزی (MATV) (MASTER ANTENNA TV) انجام می پذیرد. از این سیستم ها به عنوان (CATV) (COMMUNITY ANTENNA TV) نیز نامبرده می شود. یک سیستمMATV مجموعه ای از تجهیزات اولیه سیگنال تلویزیونی و تجهیزات پردازش و تقویت سیگنال و توزیع آن از طریق کابل های کواکسیال بین گیرنده های تلویزیونی است و هدف از برقراری آن مهیا کردن سطح سیگنال مناسب را برای هر گیرنده جهت دریافت تصویری با کیفیت قابل قبول می باشد. تجهیزات سیستم MATV به دو دسته اصلی صفحه بعد تقسیم می گردد:
1- تجهیزات ابتدایی تهیه سیگنال ( HEADEND equipment)
این تجهیزات شامل آنتن و تقویت کننده فیلترها ، مبدل های فرکانسی ، تله موج ها و مچینگ ها می باشد که برای پردازش سیگنال تلویزیونی و رساندن آن به اندازه و کیفیت مطلوب برای گیرنده ها به کار می روند .
2- تجهیزات توزیع سیگنال ( DISTRIBUTION equipment)
شامل قطعاتی چون تقسیم کننده های انشعابی يا مقسم انتهایی (SPLITTER) و تقسیم کننده عبوری يا میانی (TAP OFF) و مقاومت های انتهایی (TEMINATOR) و غيره برای تحویل سیگنال به گیرنده ها و جدا سازی ( ISOLOTION ) هر گیرنده از سیستم می باشد
دسی بل ( db ) :
مقدار سيگنال تلويزيونی را عموماً با واحد ميكرو ولت اندازه می گيرند و برای سادگی محاسبات وكم شدن اعشار از دسی بل ( db ) استفاده می گردد كه مقدار آن از رابطهdb = 20 log( E1/E2) محاسبه می گردد.
در حقيقت دسی بل چند مرتبه بزرگ يا كوچك بودن سيگنال را نسبت به يك سطح مبنا نشان می دهد . در سيستم های MATV اين سطح مبنا (E2 ) را برابر1000 ميكرو ولت ميگيرند لذا براي خروجي 1000 ميكرو ولت بهره برابر صفر دسي بل ميشود. تمام مقادير ضريب تقويت آمپلی فاير ها و افت های سيستم و مقادير ايزولاسيون به db بيان می شود . در محاسبات بر حسب دسی بل به راحتی می توان مقادير را جمع يا تفريق كرد. در ادامه بحث ما مبناي بالا را در نظر ميگيريم.لازم به ذكر است در بعضي سيستمها ولتاژ مبنا(E2 ) را برابر يك ميكرو ولت ميگيرند و از رابطه db = 20 log E1 مقدار بهره را به دست مي آورند و بر حسب دبي ميكرو ولت بيان ميكنندكه براي ولتاژ خروجي (E1) يك ميكرو ولت مقدار بهره برابر صفر دبي ميكرو ولت بدست مي آيد. در اين صورت براي مقدار مبناي 1000 ميكرو ولت كه در حالت قبلي صفر دسي بل به دست مي آمد 60 دبي ميكرو ولت بيان ميشود.
 
كابل های مورد استفاده در MATV
در كابل كشی سيستم های MATV از كابل كواكسيال 75 اهمی استفاده می گردد . اين كابل ها كه به آن ها كابل هم محور هم اطلاق می شود دارای يك هادی مركزی از جنس مس می باشند كه وظيفه حمل سيگنال را به عهده دارد و يك شيلد به صورت بافته مسی كه دور كابل را گرفته واز اثر القا و تداخل روی سيگنال توسط عوامل خارجی جلوگيری می كند و امكان جذب مستقيم سيگنال توسط هادی مركزی را از بين می برد . برای اتصال كابل های كواكسيال به تجهيزات MATV از كانكتور های نوع F استفاده می گردد كه بسته به نوع كابل سايز آن انتخاب می گردد . كابل های مورد استفاده در سيستم MATV برای خطوط اصلی RG6 – RG11 – RG59 می باشد كه تفاوت آن ها در مقدار افت كابل به ازای طول مشخص می باشد . برای فواصل طولانی ( بين چندين ساختمان ) و يا برای مواردی كه نياز به خاك كردن كابل باشد كابل RG11/U استفاده می گردد . در داخل ساختمان نيز معمولاً برای تمام مسيرها به طور يكسان كابل RG59 به كار می رود . برای اتصال پريزها به سيستم بين تپ آف و پريز و يا بين اسپليتر و پريز بسته به فاصله و تعداد پريزها ی مسير از كابل های 3C-2V و 4/5C-2V و 5C-2V استفاده
 می گردد هرچه ضريب حرف C بالاتر باشد افت كابل كمتر است. در شكلهاي صفحه بعد سه نوع كابل
 
طراحی سيستم MATV
الف : طراحی سيستم توزيع
از آنجا كه افت سيستم توزيع آنتن مركزی در انتخاب تجهيزات اوليه ( HEAD END ) موثر است لذا بايد ابتدا سيستم توزيع را طراحی و محاسبه نمود . قدم اول تهيه نقشه ساختمان و علامت گذاری محل پريزها و محل آمپلی فاير است . نحوه توزيع كابل ها نيز از نظر عمودی يا افقی بودن نسبت به شكل ساختمان بايد تعيين شود وسپس كابل های لازم تعيين شود . از كابل كشی طولانی و كابل كشی زيگزاگ و حلقوی بايد اجتناب كرد و كابل ها را حدالامكان به طور مستقيم كشيد . بعد محل تپ آف ها واسپليتر ها را تعيين می كنيم . طولانی ترين كابل يا كابل با بيشترين تعداد تپ آف ها و اسپليتر ها را بايد برای محاسبه افت سيستم درنظر گرفت . در صورت عدم اطمينان در مورد شاخه با بيشترين افت بايد در چندين شاخه افت را محاسبه كرد وشاخه با بيشترين افت را انتخاب نمود .افت های سيستم توزيع:
1- افت كابل ها : مقداری از سيگنال در حين عبور از كابل كواكسيال افت خواهد كرد مقدار اين افت به نوع كابل مورد استفاده وفركانس سيگنال عبوری بستگی دارد در فركانس های بالاتر افت بيشتری وجود خواهد داشت . بهتر است افت كابل را برای بالاترين فركانس موجود يا فركانسی كه ممكن است در آينده دريافت شود محاسبه نمود .
2- افت اسپليتر ها (INSERTION LOSS)) : مقدار افت در اسپليتر عبارت است از مقدار ورودی بر حسب db منهای مقدار خروجی. به عنوان مثال اين مقدار برای اسپليتر دو راه حدود 5/3 db وبرای اسپليتر 4 راه حدود 5/6 الی 2/7 دسی بل خواهد بود . معمولاً كارخانجات سازنده مقدار اين افت را برای فركانس های مختلف در جدولی ارائه می كنند .
3- افت جداسازی ( ISOLATION LOSS ) (TAP LOSS) : هر تپ آف برای ايزولاسيون گيرنده ها از يكديگر سيگنال ورودی را مقداری كاهش می دهد وآن را به خروجی فرعی می دهد اين افت را افت جداسازی (ايزولاسيون ) می نامند مثلاً اگر يك سيگنال 25db به يك تپ اآف با افت ايزولاسيون 23db اعمال شود در خروجی فرعی مقدار 2db سيگنال قابل دسترس خواهد بود .
4- افت عبوری (Trough loss) INSERTION LOSS)) : هنگام عبور سيگنال از داخل تپ آف از ورودی اصلی به خروجی اصلی مقداری افت ايجاد می شود كه بايد مقدار آن را در محاسبات مد نظر قرار داد . مقدار اين افت برای فركانس های مختلف فرق می كند وتوسط كارخانه سازنده جدولی ارائه می گردد ولی معمولاً تپ آف های با مقدار ايزولاسيون بالا افت عبور ی كمتری دارند .
نحوه انتخاب تپ آف : بايد در يك سيستم MATV تپ آف هایی انتخاب شود كه حداقل 1000 میکرو ولت را برای هر گيرنده تامين كند وايزولاسيون كافی بين گيرنده و سيستم جهت جلوگيری از تداخل ايجاد كند دريافت سيگنال بيش از 1000 ميكرو ولت ( صفر دسی بل ) به گيرنده آسيبی نمی رساند و بسياری از طراحان سيستم های MATV سطح خروجی های فرعی را تا 10 db نيز در نظر می گيرند . در طراحی سيستم افت ايزولاسيون آخرين تپ آف قبل از آمپلی فاير را در نظر می گيرند ودر صورت طولانی بودن مسير بين تپ آف و دستگاه تلويزيون بايد افت كابل آن را نيز در نظر گرفت . در صورت استفاده از تپ آف های ديواری ( wall tap ) به علت كم بودن فاصله بين تپ آف و تلويزيون می توان از اين افت صرف نظر كرد .
انتخاب آنتن :
سه فاكتور اساسی بايد در انتخاب آنتن در نظر گرفته شود :
1- نوع آنتن 2- بهره آنتن 3- جهت آنتن
نوع آنتن با توجه به تعداد و فركانس كانال های مورد در يافت تعيين می گردد. جهت آنتن نيز نسبت به فرستنده تلويزيونی‌تنظيم می شود. اگر تمام فرستنده ها يا تعدادی از آن ها در يك جهت باشند از آنتن پهن باند (BROAD BAND ) استفاده می شود و اگر در جهت های متفاوت باشند از آنتن تك كانال استفاده می گردد . انواع معمول آنتن ها عبارتند از :
VHF/UHF/FM , VHF/UHF , UHF , VHF   
البته برای دريافت سيگنال FM بهتر است از آنتن جداگانه FM استفاده می گردد .بهره آنتن يك مساله مهم است بايد آنتن حداقل سيگنال 0 db رابرای ورودی آمپلی فاير مهيا نمايد . در محل های با سيگنال ضعيف بايد از آنتن با بهره و اندازه بزرگتر استفاده كرد . در صورتی كه باز هم سيگنال مناسب به دست نيامد مجبوريم از پری آمپلی فاير استفاده كنيم . جهت آنتن نيز بايد به دقت تنظيم شود . اگر آنتن خوب تنظيم شده باشد نسبت سيگنال هايی كه با قسمت جلو آنتن دريافت می گردد به سيگنال هايی كه با عقب آنتن دريافت می گردد بيشتر خواهد بود .
بر آورد سطح سيگنال :
تعيين دقيق سطح سيگنال برای طراحی صحيح سيستم مهم و اساسی است . لذا با استفاده از يك آنتن با بهره مشخص ( در صورت امكان همان آنتنی كه نصب خواهد شد ) و يك تلويزيون رنگی قابل حمل و نقل و يك ميدان سنج میتوان مقدار سيگنال را در محل نصب آنتن تعيين كرد . در محل هايی كه سيگنال ضعيف است محل آنتن بسيار حساس است . ممكن است در يك محدوده 15 متری تفاوت های فاحشی در مقدار سيگنال وجود داشته باشد . ارتفاع آنتن نيز در مقدار سيگنال موثر است . ولی اين مطلب را بايد در نظر داشت كه هميشه ارتفاع بالاتر باعث ايجاد سيگنال بيشتر نمی شود بلكه بايد مناسب ترين ارتفاع را با آزمايش به دست آورد . ميدان سنج نيز برای اندازه گيری سيگنال دريافت شده برای هر كانال به كار می رود.اين تست بايد در چند جای سايت انجام گيرد و بهترين محل برای آنتن انتخاب گردد . در صورتی كه آنتن به دقت انتخاب شود حتی می تواند بعضی تداخل ها را از بين ببرد . با استفاده از تلويزيون رنگی می توان كيفت سيگنال را در هر كانال مشخص كرد ودر صورت وجود تداخل امواج اثر آن را روی تصوير مشاهده نمود .
انتخاب پيش تقويت كننده ( PRE AMPLIFIRE ) :
در محل هايی كه سيگنال ضعيف است ممكن است تقويت اوليه سيگنال لازم شود . در انتخاب پری آمپلی فاير بايد چهار نكته را در نظر گرفت :
1- پوشش باند فركانسی 2- بهره ( GAIN ) 3- مقدار نويز 4- توان خروجی
پری آمپلی فاير ها به صورت UHF يا VHF يا VHF/UHF ساخته شده اند بعضی از آن ها دارای مسدود كننده های موج FM هستند تا اگر دريافت FM باعث ايجاد نويز شود آن را بلوكه كنند . پری آمپلی فاير بايد سطح سيگنال كافی برای آمپلی فاير توزيع را فراهم كند . هنگام استفاده از آمپلی فايرهای تك كانال هم ممكن است يك پری آمپلی فاير لازم شود . تا سيگنال كافی برای عمل كرد صحيحAGC فراهم گردد . مقدار نويز توليد شده توسط پری آمپلی فاير يا همان عدد نويز(noise figure ) نيز بايد پايين باشد تا كيفيت سيگنال حفظ شود . تغذيه پری آمپلی فاير كه در نزديكترين فاصله از آنتن نصب شده است از طريق يك منبع تغذيه در داخل ساختمان نيز ممكن است و پس از كاهش دادن ولتاژ به مقدار لازم توسط خطوط سيگنال به پری آمپلی فاير اعمال می شود . توجه كنيد بين منبع تغذيه و پری آمپلی فاير يك اسپليتر معمولی قرار ندهيد چون باعث اتصال كوتاه منبع تغذيه می گردد . از مبدل تطبيق امپدانس نيز نبايد استفاده نماييد .
پردازش و تركيب سيگنال :
عمل پردازش سيگنال توسط فيلترها – مسدود كننده ها – تركيب كننده ها و تضعيف كننده ها انجام می گيرد . در صورت لزوم از مبدل فركانس UHF به VHF نيز می توان استفاده كرد.
انتخاب آمپلی فاير :
در انتخاب آمپلی فاير بايد 4 مورد را در نظر گرفت :
1- فركانس و تعداد كانال های مورد دريافت
2- افت كل سيستم
3- نوع سيگنال ورودی
4- قابليت خروجی ( مقدار خروجی )   
اگر كانال های هم جوار زيادی در يافت شود هر كانال برای جلوگيری از تداخل بايد فيلتر شود و برای اين منظور معمولاً از آمپلی فايرهای تك كانال ( STRIP ) استفاده می گردد . مقدار ورودی به علاوه بهره تقويت كننده بايد از افت كل سيستم بيشتر شود ومعمولاً 6 db نيز به اين مقدار اضافه می كنند . آمپلی فايرهای تك كانال بعد از فيلتر كردن و بلوكه كردن تمام كانال های ديگر به كار می روند و دارای 2 نوع كنترل بهره اتوماتيك ( AGC ) و دستی هستند . كه نوع AGC در شرايط آب و هوايی و محيطی مختلف سطح سيگنال را ثابت نگه می دارند . آمپلی فايرها با ورودیUHF/VHF , VHF ساخته شده اند . در ضمن مقدار سيگنال ورودی به علاوه بهره تقويت كننده نبايد از توان خروجی آمپلی فاير بيشتر شود . قابليت يا مقدار خروجی آمپلی فاير مقداريست كه تقويت كننده بدون برش و يا مدولاسيون عرضی می تواند تحويل دهد . بعضی از آمپلی فايرها دارای كنترل بهره و اعوجاج و نوسان وتضعيف كننده قابل تنظيم می باشند تا سطح سيگنال يكسانی را برای تمام كانال ها ايجاد كنند .
+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:3  توسط 66  | 

 
مقدمه
تقريباً در تمامي كارگاه‌ها و كارخانجات صنعتي، ماشين‌آلاتي وجود دارند كه توسط آنها مي‌توان انرژي الكتريكي را تبديل به انرژي مكانيكي نموده و طي يك‌سري حركات مكانيكي كار خاصي را به انجام رسانيد. مثلاً توسط ماشين‌ تراشكاري ، مي‌توان روي يك قطعه را تراشيده و يا توسط جرثقيل برقي و يا تسمه نقاله، جسمي را از محلي به محل ديگر انتقال داده و يا اينكه و يا اينكه توسط پمپ آب را از محلي به محل ديگر انتقال داد كه قلب دستگاههاي ذكر شده و بسياري از دستگاههاي ديگري كه در صنعت وجود دارند، يك يا چند موتور الكتريكي مي‌باشد كه انرژي الكتريكي را از طريق يك وسيله قطع و وصل با كنترل‌كننده‌ها و محدود كننده‌ها از شبكه گرفته و آن را تبديل به حركت مكانيكي كرده و سپس اين حركت به كمك مكانيزم خاص دستگاه مربوطه كار مورد نظر را به انجام مي‌رساند. براي اينكه اين دستگاهها بنحو مطلوب و مطابق برنامه، كار مورد نظر را انجام دهند. بايد اولاًُ بوسيله‌اي ، انرژي الكتريكي را به آنها وصل نموده، ثانياً اين انرژي بايد در زمان و يا موقعيت مكاني مشخص به دستگاه رسيده و آن را بكار اندازد و همچنين در زمان و مكان مشخص نيز قطع شود، ثالثاً انرژي الكتريكي رسانده شده به دستگاه نبايد از مقدار معيني كه براي كار دستگاه لازم است بيشتر و يا كمتر باشد.
شركت كاله نيز به عنوان يكي از همين كارخانجات صنعتي با بكارگيري از فن روز و دستگاههاي مختلف توانسته محصولات خود را به بازار عرضه دارد شركت كاله در كيلومتر 2 جاده آمل به نور قرار دارد انرژي مورد نياز خود را از طريق پست 633 كيلووات چمستان تغذيه مي‌كند و در صورت لزوم نيز مي‌توان از پست 63 كيلووات آمل نيز استفاده نمود و انرژي را توسط خط 20 كيلوولت انتقال و در داخل شركت نيز توسط پست‌ها به مصرف‌كننده فرستاده مي‌شود در اينجا به معرفي پست‌ها و لوازم اندازه‌گيري و حفاظتي نصب شده در پست‌ها مي‌پردازيم.


بطوركلي پست‌هاي زميني به انواع زير تقسيم مي‌شوند:
الف-پست پاساژ(اصلي): پستي است كه فقط كليد خانه است و لوازم اندازه‌گيري مشترك ولتاژ اوليه در آن نصب مي‌شود و فاقد ترانس عمومي يا اختصاصي است.
ب-پست پاساژ عمومي: پستي است كه علاوه بر لوازم اندازه‌گيري مشترك ترانسفورماتور عمومي شركت نيز در آن نصب مي‌شود.
ج-پست اختصاصي: پستي است كه در آن ترانسفورماتور اختصاصي و لوازم اندازه‌گيري مشترك نصب مي گردد.
د-پست عمومي اختصاصي: پستي است كه علاوه بر ترانسفورماتور اختصاصي و لوازم اندازه‌گيري مشترك ترانسفورماتور عمومي شركت نيز در آن نصب مي‌شود.
در تمام مواردي كه تأسيسات به مشترك و شركت در يك پست نصب مي‌شود بايستي بين تأسيسات مزبور با فني جداسازي شده و هر قسمت داراي درب مستقل باشد تا دسترسي مشترك به تاسيسات عمومي شركت امكان‌پذير نباشد. در اين موارد ارجح است كه براي نصب تأسيسات نيرورساني مشترك و تأسيسات شركت دو پست مستقل از هم احداث گردد.

استفاده از تابلوهاي نوع Z
در پستهاي پاساژ و پستهاي عمومي اختصاصي(پست‌هائكه ترانسفورماتور اختصاصي مشترك و ترانسفورماتور عمومي شركت در يك پست قرار دارد) سعي مي‌شود براي كم‌كردن ابعاد پست لوازم اندازه گيري و ديژنكتور در يك تابلو z گنجانده شود.
شركت كاله نيز داراي پنج پست مي‌باشد كه يك پست به عنوان پست پاساژ و چهار تا ديگر به عنوان پست عمومي مي‌باشد.

پست‌هاي عمومي شركت داراي چهار ترانسفورماتور با قدرتهاي 1200KVA ، 1600KVA , 2000KVA و ولتاژ مي باشند ترانسفورماتورها داراي اتصال ستاره مثلث مي‌باشند كاربرد اصلي اين اتصال در پست‌هاي فرعي انتهايي خطوط براي كاهش و توزيع ولتاژ به بار است اين نوع اتصال هم مزيت ستاره و هم مثلث را دارا مي‌باشد و بار نامتعال اثر نامطلوبي بر روي ولتاژ ندارد.
سكسيونر:
الف-سكسيونر قابل قطع زيربار: سكسيونر قابل قطع زير بار برابر ولتاژ بيست كيلو ولت جهت نصب در تابلو با عمل قطع و وصل دستي بطور كامل با مشخصات فني زير طبق استاندارد مي باشد. سكسيونر مناسب براي حداكثر ولتاژ 24 كيلووات و فرنكانس 50HZ مي‌باشد و شدت جريان اسمي كليد 630 آمپر ، ظرفيت تحمل كليد حدود 36 كيلومتر و شدت جريان اتصال كوتاه 14 كيلو آمپر در نه ثانيه باشد.
ب-سكسيونر اتصال زمين: در تابلوي بيست كيلو ولت سكسيونر بيست كيلو واتي اتصال زمين با مشخصات زير مي باشد.
سكسيونر مخصوص اتصال زمين با شدت جريان اسمي 400 آمپر و ولتاژ اسمي 20 كيلو ولت با عمل قطع و وصل دستي و سريع و نيز سكسيونر اتصال زمين با سكسيونر اصلي توسط قفل مكانيكي اينترلاك است.

ج-سكسيونر فيوزدار: كليه مشخصات سكسيونر فيوزدار عيناً شبيه سكسيونر قابل قطع زير بار است ولي مجهز به سه عدد فيوز محدود كننده جريان مي‌باشد كه در زير كليد قطع و وصل نصب مي‌شود.

ديژنكتور
ديژنكتور بيست كيلوواتي كم روغن مخصوص نصب در داخل تابلو مي‌باشد و ديژنكتور توسط اهرم دستي شارژ و آماده قطع و وصل مي‌شود. ولتاژ اسمي كليد 20 كيلوولت و حداكثر ولتاژ سيستم 24 كيلوولت مي‌باشدو شدت جريان اسمي كليد 630 آمصر و فركانس آن 50 هرتس باشد روغن ديژنكتور بايد مطابق استاندارد باشد و مخزن روغن كليد بايد فشاري برابر 10BAR را به مدت 15 دقيقه تحمل كند.

سنسور
المان حس‌كننده يك سيستم مي‌باشد كه كميتهاي فيزيكي مانند فشار، حرارت، رطوبت ، دما و ... را به كميتهاي الكتريكي پيوسته ، غيرپيوسته يا حتي كميت غيرالكتريكي(مانند تغيير مقاومت داخلي سنسور) تبديل مي‌كند. اين سنسورها در انواع دستگاه‌هاي اندازه‌گيري ، سيستمهاي كنترلي آنالوگ و ديجيتال مانند PLC باعث شده است كه سنسور بخشي از اجزاي جدانشدني دستگاه كنترل اتوماتيك باشد سنسورها اطلاعات مختلف از وضعيت اجزاي متحرك سيستم را به واحد كنترل ارسال نموده و باعث تغيير وضعيت عملكرد دستگاهها مي‌شوند.

سوئيچهاي بدون تماس:
سوئيچهاي هستند كه با نزديك شدن يك قطعه وجود آن را حس كرده و فعال مي‌شوند اين عمل باعث جذب يك رله، كنتاكتور و يا ارسال سيگنال الكتريكي به طبقه‌ ورودي يك سيستم گردد.
انواع سنسورهاي بدون تماس:
سنسور القايي: حساس در مقابل فلزات
سنسور خازني: حساس در مقابل همه چيز
سنسور نوري: حساس در مقابل همه چيز
سنسور مغناطيسي: حساس در مقابل آهنربا
سنسور كدرنگ: تشخيص نوار رنگي كاغذهاي بسته‌بندي

كاربر سنسورها:
شمارش توليد-كنترل سطح مخازن-اندازه‌گيري سرعت-تشخيص پارگي ورق-كنترل تردد

شيرهاي برقي:
يكي از ساده‌ترين ابزارها و وسايل كنترل در مدار صنعتي شيرهاي برقي بوبين‌دار هستند. اين نوع شيرها از يك سيم‌پيچ مغناطيسي به اضافه يك ميله متحرك تشكيل شده‌اند. هنگامي كه سيم‌پيچ برقدار مي‌گردد، ميله را به طرف خود مي‌كشد و بدين‌ترتيب مسير شير باز مي‌گردد و راه براي روان شدن و گردش مايع فراهم مي شود زماني كه سيم‌پيچ از تحريك مي‌افتد نيروي كشش فنر ميله را به حالت اوليه خود برمي‌گرداند و راه گردش مايع مسدود مي گردد.
سيم‌پيچ شيرهاي برقي از چند دور سيم كه به دور يك هسته پيچيده شده‌اند تشكيل شده است اين هسته از نوع ميان‌تهي است و درست به اندازه ميله‌اي كه در وسط آن قرار مي‌گيرد ساخته شده است. سيم‌پيچها به منظور حفاظت در برابر گرد و غبار و حرارت در محفظه‌اي از جنس اپكسي قرار داده شده‌اند و دو رشته سيم به منظور برقراري ارتباط با خارج از اين محفظه بيرون آمده است. در هنگام تحريك شدن سيم‌پيچ يك ميدان مغناطيسي قوي در اطراف ان ايجاد مي‌شود كه باعث كشيده شدن ميله تا وسط آن مي‌شود.شيرهاي برقي در انواع مختلف AC , DC قابل تهيه هستند. شيرهاي برقي براي كنترل جريان هوا، آب، گازهاي ساكن، شير، روغن‌هاي سبك و ديگر سيالات ساخته شده‌اند.

رله‌ها، كنتاكتورها و راه‌اندازهاي موتور:
محدوده وسيعي از وسائل كنترل‌كننده در سيستمهاي كنترلي عبارتند از: رله‌ها، كنتاكتور و راه‌اندازهاي موتور در يك سيستم كنترلي قسمتهاي مختلفي با هم همكاري مي كند تا كنترل يك سيستم پيچيده امكان‌پذير باشد مانند سوئيچ‌هاي محدود كننده، سوئيچ‌هاي بدون تماس و سوئيچ‌هاي نوري كه تمام انها به وسيله كابل به هم مرتبط شده‌اند و در نهايت پس از انجام عملياتي بر روي علائم فرستاده شده توسط آنها يك عملگر مثل رله‌ يا كنتاكتور يا راه‌انداز موتور را فعال مي‌كنند رله‌ها و كنتاكتورها و راه‌اندازهاي موتور تا حد زيادي به هم شباهت دارند زيرا تمام آنها داراي بوبين محرك هستند كه با تحريك آن يكسري اتصالات به هم مرتبط و يكسري از هم جدا مي‌شوند. راه‌انداز موتور در واقع يك كنتاكتور است كه قسمت محافظ در برابر اضافه بار به ان اضافه شده است. محافظ اضافه بار وظيفه محافظت در برابر جريان اضافي را كه از موتور متصل شده به راه‌انداز كشيده مي‌شود بر عهده دارد و اين قسمت جريان اضافي احتمالي و يا درجه حرارت بالاي حد مجاز را حس كرده و فوراً اتصالات خود را قطع مي كند و موتور را از زير بار خارج مي‌نمايد.

شارژ سه‌فازه صنعتي (ليفت‌تراك)
شارژ سه فازه صنعتي براي شارژ ليفت تارك برق متناوب AC يا همان برق شهر را گرفته و پس از عبور از فيوز به يك ترانس با اتصال ستاره مثلث مي‌دهد كه خروجي آن نيز به يك برد الكتريكي داده كه در نهايت خروجي دو سر مثبت و منفي به ما مي‌دهد كه براي شارژ ليفت‌تراك مي‌باشد و خود ليفت‌تراك نيز از 36 باتري 2 ولتي تشكيل شده كه پس از شارژ كامل علامت آن روي نمايشگر روي صفحه شارژ قرار دارد نشان داده مي‌شود و شارژ شدن آن نيز به دو صورت با جريان ثابت و يا معمولي صورت مي‌گيرد.
موتور دو سرعته(دالاندر) با استفاده از دو موتور يكي با سرعت كم و ديگري با سرعت زياد:
در اين نوع موتور (دالاندر) به علت سختي كار سيم پيچي و هزينه آن ما بدين صورت استفاده مي‌كنيم كه از دو موتور سه‌فاز يكي با دور 1500R.P.M و ديگري با دور 3000R.P.M بطوري كه يك محور (شفت) از رتور هر دو موتور عبور كرده و ما نيز اينك دو موتور M2 , M1 داريم و زماني كه احتياج به دور كم داريم موتور M1 را استارت مي‌كنيم و زماني كه با سرعت بيشتر نياز داريم موتور M1 را از مدار خارج كرده و موتور M2 را وارد مدار مي‌سازيم و دستگاه مورد نظر با سرعت بيشتري به گردش درمي‌آيد و اين موتور دو سرعته در سالن پنير گودا بر روي يكي از دستگاهها نصب بوده است.

حشره‌كش(صنعتي):
اين دستگاه همانند لامپهاي فلورسنت مي‌باشد با اين تفاوت كه علاوه بر چوك مهتابي استارت و لامپ براي ايجاد روشنايي نيز از يك ترانس فزاينده و رگلولاتور ولتاژ(برد الكتريكي) و تعدادي ميله‌هاي آهني كه به ترتيب يكي در ميان داراي ولتاژ مثبت و منفي مي باشد و ولتاژ بين ميله‌ها نيز حدود 0 تا 1000 ولت مي‌باشد و حشره‌ها و پشه‌ها براي نزديك شدن به روشنايي لامپ فلورسنت كه در دو طرف ميله قرار دارد به اين ميله‌هاي آهني داراي ولتاژ برخورد كرده و كشته مي‌شود اين سيستم حشره كش در سالن‌هاي بزرگ براي از بين بردن حشره ها استفاده مي‌گردد.
فتوسل:
فتوسل وسيله‌اي است كه نسبت به نور حساس بوده و با برخورد شعاعهاي نوري با صفحه آن از خود ولتاژي توليد مي‌كند و از توليد اين ولتاژ مي‌توان رله‌اي را بكار انداخت كه مداري را قطع يا وصل كند.
از فتوسل معمولاً براي خاموش و روشن كردن اتوماتيك لامپهاي معابر استفاده مي‌شود.
طرز كار ان بدين صورت است كه وقتي روز است فتوسل ولتاژي را توليد مي‌كند كه اين ولتاژ توليدي به رله‌اي فرمان مي‌دهد كه مدار روشنايي معابر را قطع كند. با تاريك شدن هوا چون نوري وجود ندارد فتوسل ديگر ولتاژي توليد نمي‌كند و جرياني به رله نمي‌رسد كه دستور قطع لامپهاي معابر را بدهد در نتيجه لامپهاي معابر روشن مي‌شود به همراه فتوسل يك تقويت كننده وجود دارد كه تغييرات جريان در اثر نور را تقويت و رله را بكار مي‌اندازد.

ژاك:
ساختمان داخلي ژاك كه از دو قسمت ژاك نر و ماده تشكيل شده است همانند (پريز برق و دوشاخه) ژاك در مدلهاي مختلف چهارشاخه كه از سه فاز MP , R.S.T پنج شاخه و غيره تشكيل شده است طريقه نصب ما ورودي را به ژاك ماده مي‌دهيم و خروجي را نيز مي‌توانيم از ژاك نر بگيريم.


پرده هوا:
پرده هوا كه در ورودي سالنها نصب مي‌گردد و براي جلوگيري از ورود حشره و غيره به داخل مي‌گردد و بطوري مي‌باشد كه داراي دو موتور سه فاز و گاهي سه موتور كه يك محور از وسط آنها گذشته و پره‌هايي نيز به محور متصل مي‌باشد.
+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:3  توسط 66  | 

 

تابلو چيست؟

تابلو عبارت است از فضايي که تجهيزات برقی در آن نصب می شوند.در تعريف تابلو لزومی ندارد آنرا حتمأ يک فضای بسته فلزی بدانيم بلکه فضای بسته فلزی، نوعی از تابلو محسوب می شود. مشکلات ناشی از نصب تجهيزات و خطرات ناشی از عوامل محيطی و پديده هايي مانند اتصال کوتاه که در تجهيزات الکتريکی روی می داد و در دسترس بودن تمام قسمتهای برقدار از سوی اپراتور، سازندگان را بر آن داشت تا ايمنی بيشتری را تامين کنند، از اين رو تابلو به شکل محفظه بسته طراحی شد تا تجهيزات داخل آن غير قابل دسترس باشند.



انواع تابلو از لحاظ ساختار :

 تابلوهای Metal Enclosed : تابلوهايي به شکل محفظه تمام بسته فلزی که تمام تجهيزات الکتريکی اعم از کليدها، ترانسهای جريان و ولتاژ، لوازم اندازه گيری، شينه ها و ... در داخل آن نصب می شود.این تابلوها  به دو دسته تقسیم می شوند:

1- تابلوهای Metal Clad: اين نوع تابلوها نوعي از تابلوهای Metal Enclosed هستند که در آنها، محفظه های مختلف از يکديگر جدا شده اند. اين امر باعث می شود تا اگر خطايي در يکی از محفظه ها روی دهد، اين خطا به محفظه های ديگر انتقال پيدا نکند و ساير محفظه ها نيز تحت تأثير آن آسيب نديده و محفوظ می مانند.

يک تابلو Metal Clad به چهار بخش تقسيم می شود :

- محفظه باسبار

- محفظه سر کابل

- محفظه LV (کنترل) که تجهيزات اندازه گيری، حفاظتی و کنترلی در آن قرار می گيرند.

- محفظه کليد

2- تابلوهای Compartment Type: اين نوع تابلوها نوعي از تابلوهای Metal Enclose هستند که در آنها، محفظه های مختلف از يکديگر جدا نشده اند.

در طراحی يک تابلو بايد موارد زير در نظر گرفته شود :

-  شرايط محيطی (جهت بهره برداری)

- شرايط لازم برای نصب

-  شرايط حفاظتی

 انواع تابلو از لحاظ محل نصب :

-   داخلی (Indoor) : تابلو در فضای بسته مانند داخل سالن يا سوله نصب می شود.

-  فضای باز (Outdoor) : تابلو در فضای باز نصب می شود.

تقسیم بندی تابلوها :

1-تابلوهای فیکس (Fix) :

-تابلوهای ایستاده چند منظوره(Multi Purpose):این تابلوها بصورت ایستاده قرار میگیرند و تابلوهای چند منظوره می باشند وداخل انها می توان تجهیزات کنترل-قدرت-پنوماتیکی و...نصب کرد.

-تابلوهای دیواری(Wall Mounting):این تابلوها به دو دسته تابلوهای روکار(On Surface)و تابلوهای توکار (Flush Mounting)تقسیم میشوند.

-تابلوهای (Rack):تابلو هایی هستند که حالت قفسه قفسه دارند و محفظه های اندازه گیری-الکترونیکی-کنترل ومخابراتی و... روی انها نصب می شود.

*تابلوهای Swing نوعی از تابلوهای Rack  هستند که دارای در متحرک می باشد  و مزیت ان این است که پشت تجهیزات ان قابل رویت است و دسترسی به پشت تجهیزات فراهم است این مدل بسیار گران است و درب ان هم شیشه ای است.

 

2-تابلوهای کشویی (Withdraw able):

-تابلو های کنترل موتورها(Motor Control Center(MCC)):این تابلو ها بصورت کشویی ساخته می شود و برای کنترل موتورها ساخته می شود .این تابلوها بخاطر مزیت تابلوهای کشویی بسیارگران هستند.

-تابلوهای مرکز قدرت(Power Center):این تابلوها برای تغذیه تابلوهای MCC استفاده میشوند و یک تابلوی توزیع است و میتواند چند تا تابلوی MCC را تغذیه کند در این تابلو ها کلیدها بیشتر از نوع هوایی هستندوبعد از پست اصلی استفاده می شوند.

 

*تابلوهای مدولار:نوع پیشرفته تابلوهای فیکس ایستاده است. هر فیدر به شکل یک مدول در تابلو نصب شده وبه وسیله یک صفحه فلزی از فیدر بالایی وفیدر پایینی خود جدا می شوند  و از لحاظ دسترسی به سر کابل  به دو نوع کلی تقسیم می شوند:

-دسترسی از پشت

-دسترسی از جلو :در این حالت معمولا" در کنار درب اصلی تابلو درب کوچکی به نام درب کناری تعبیه شده و اتصالات کابل ها به فیدرها از طریق این درب انجام میشود این نوع سلولها را از لحاظ محل ورود سر کابل های ورودی وخروجی میتوان به ورود از بالا و ورود از پایین تقسیم نمود.

 

*انواع تابلوها از لحاظ ايستايي :

ايستاده(Self Standing / Free Standing) :تابلو حالت خود ايستا دارد ( نياز به مهار آن توسط سازه ی ديگری نيست و يا به ديگری تکيه ندارد.)

ديواری (Wall Mounted) : تابلو هايي که روی ديوار نصب می شوند.

اين تابلوها اگر روی سطح ديوار نصب شوند، روکار، Surface Mounted و اگر داخل ديوار جاسازی شوند، توکار، Flush Mounted يا Recessed Mounted ناميده می شوند.

 

انواع تابلو ها از لحاظ سطح ولتاژ :

تابلو ها از لحاظ سطح ولتاژ به دو دسته تقسيم می شوند:

تابلوهاي فشار ضعيف(LV) تا 1000V

تابلوهاي فشار متوسط (MV) از 1000V تا 36000V

 

تابلوهای فشار ضعيف :

تابلوهاي فشار ضعيف در سطح ولتاژ کمتر از 1000V قرار دارند.

مطابق IEC60439-1 تابلوي فشار ضعيف ترکيبی است از يک يا چند وسيله قطع و وصل (Switching Device)فشار ضعيف همراه با تجهيزات کنترلی، اندازه گيری، نشانگر، حفاظتی، تنظيم کننده و ... مربوط به خود که نحوی کامل نصب و سوار شده و کليه Interconnection ها و اتصالات الکتريکی و مکانيکی داخلي و قطعات ساختمانی را شامل گردد.ولتاژ نامی تابلوهای فشار ضعيف معمولأ تا 690V و ولتاژ سرويس تا 400V می باشند.

تابلوهای فشار ضعيف معمولأ در دو نوع زير ساخته می شوند :

تابلوی ايستاده (Fix) ثابت

تابلوی ايستاده (Withdraw able) کشويي

تابلوهای فشار متوسط :

تابلوهای فشار متوسط در سطح ولتاژ بين 1000V تا 36000V قرار دارند.

اجزای اصلی يک تابلو فشار متوسط شامل بدنه، کليد (دژنکتور) و يا کنتاکتور فشار متوسط، رله، باسبار، ترانفورماتور ولتاژ و جريان، لوازم اندازه گيری و تجهيزات کنترلی می باشد.

تابلوهای فشار متوسط به دو دسته کلی تقسيم می شوند:

تابلوهای فشار متوسط ثابت(Fix)

تابلوهای فشار متوسط کشويي (Withdraw able)

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 19:2  توسط 66  | 

تاريخچه

در سال 1802 پتروف (V.P.Petrof) كشف كرد كه اگر دو تكه زغال چوب را به قطب هاي باتري بزرگي وصل كنيم و آنها را به هم تماس دهيم و سپس كمي از هم جدا كنيم شعله روشني بين دو تكه زغال ديده مي شود. و انتهاي آنها كه از شدت گرما سفيد شده است نور خيره كننده اي گسيل مي دارد. قوس الكتريكي هفت سال بعد ديوي (H.Davy) فيزيكدان انگليسي اين پديده را مشاهده نمود و پيشنهاد كرد كه اين پديده به احترام ولتا قوس ولتا ناميده شود. آزمايش ساده اگر بخواهيم در يك روش ساده اي ايجاد قوس الكتريكي را نشان دهيم بايد دو تكه كربن را روي گيره قابل تنظيم سوار نمود (بهتر است كه به جاي زغال چوب معمولي ميله خاصي كه از كربن قوس ساخته مي شود و با فشار دادن مخلوط گرافيت ، كربن سياه و مواد چسبنده به وجود مي آيند، استفاده شود). چشمه جريان مي تواند برق شهر هم باشد براي اجتناب ازاينكه در لحظه تماس تكه هاي كربن مدار كوتاه ايجاد شود بايد رئوستايي به طور متوالي به قوس وصل شود. معمولا برق شهر با جريان متناوب تغذيه مي شود. ولي در صورتي كه جريان مستقيم از آن عبور كند قوس پايدارتر است به طوري كه يكي از الكترودها هميشه مثبت «آند)و ديگري همواره منفي «كاتد)است.



ماهيت قوس الكتريكي در قوس الكتريكي الكترودها در اثر حرارت سفيد رنگ مي شود. ستوني از گاز ملتهب رساناي خوب الكتريكي بين الكترودها وجود دارد. در قوس معمولي اين ستون نوري بسيار كمتر از نور تكه هاي كربن سفيد شده از آزمايش‌هاي مربوط به گرما گسيل مي كنند. چون الكترود مثبت دمايش از الكترود منفي بيشتر است زود تر از بين مي رود. در نتيجه تصعيد شديد كربن صورت گرفته و در آن الكترود (الكترود مثبت) فرورفتگي به وجود مي آيد كه به دهانه مثبت معروف است و داغ ترين نقطه الكترودهاست. دماي دهانه در هوا و در فشار جو به 4000 درجه سانتيگراد مي رسد. در لامپ هاي قوسي سازوكارهاي منظم و خود كار خاصي براي نزديك كردن تكه هاي كربن با سرعت يكنواخت وقتي با سوختن از بين مي روند، مورد استفاده قرار مي گيرند. براي اينكه سايش و خوردگي الكترود مثبت به خاطر دماي بالايش بيشتر است،براي همين هميشه الكترود كربن مثبت كلفت تر از الكترود منفي اختيار مي شود. دماهاي بالا در قوس الكتريكي قوس الكتريكي مي تواند بين الكترودهاي فلزي ساخته شده از آهن ، مس و غيره نيز بگيرد. در اين حالت الكترودها به ميزان زيادي ذوب و تبخير مي شوند و اين عمل به مقدار زيادي آزمايش‌هاي مربوط به گرما احتياج دارد. به اين دليل دماي مركز الكترود فلزي معمولا كمتر از دماي الكترود كربني است (2000 تا 2500 درجه سانتيگراد). قوسي كه بين الكترودهاي كربن در گاز فشرده اي قرار مي گيرد (حدود 20atm) بالا رفتن دماي مركز مثبت تا 5900 درجه سانتيگراد يعني دما روي سطح خورشيد را ممكن ساخته است. معلوم شده است كه كربن در اين حالت ذوب مي شود. دماي باز هم بالاتري را مي توان در ستوني از گاز و بخاري كه از آن تخليه الكتريكي مي گذرد، به دست آورد. بمباران شديد اين گاز و بخار با الكترون ها و يون هايي كه با ميدان الكتريكي قوس شتاب گرفته اند دماي ستون گاز را 6000 تا 7000 درجه سانتيگراد مي رساند. به اين دليل تقريبا تمام مواد شناخته شده در ستون قوس الكتريكي ذوب و تبخير مي شوند. و بسياري از واكنش هاي شيميايي كه در دماهاي پايين انجام شدني نيستند، با قوس الكتريكي امكان پذير مي شوند. مثلا ميله هاي چيني دير گداز در شعله قوس به سهولت ذوب مي شود. چگونگي ايجاد تخليه قوس الكتريكي براي ايجاد تخليه قوس الكتريكي به ولتاژ زيادي احتياج نيست با ولتاژ 40 تا 45 ولت بين الكترود ها مي توان قوس را به وجود آورد. از طرف ديگر جريان داخل قوس زياد است. مثلا حتي در قوس كوچك جريان به 5 آمپر مي رسد، در حاليكه در قوس هاي بزرگ كه در مقياس صنعتي به كار مي روند جريان به صدها آمپر بالغ مي شود. اين به اين معنا ست كه مقاومت قوس پايين است و از اين رو ستون گاز تابان رساناي الكتريكي خوبي است. يونيزاسيون گاز با انرژي قوس الكتريكي يونش شديد گاز با قوس الكتريكي به آن دليل امكان پذير است كه كاتد قوس الكتريكي تعداد زيادي الكترون گسيل مي داد. اين الكترون ها با برخورد با گاز داخل شكاف تخليه گازي آن را يونيزه مي كنند. گسيل الكتروني شديد از كاتد از آنجا ممكن مي شود كه خود كاتد تا دماي بسيار بالايي گرم مي شود (بسته به ماده از 2200 تا 3500). وقتي كه الكترودهاي قوس در ابتدا تماس داده شوند تقريباً تمام گرماي ژول كه از الكترود ها مي گذرد در ناحيه تماس كه مقاومت بسيار دارد آزاد مي شود. به اين دليل انتهاي الكترودها به شدت گرم مي شوند كه براي گيراندن قوس به هنگام جداكردن آنها كافي است آن وقت كاتد قوس توسط جرياني كه از قوس مي گذرد، در حالت التهاب مي ماند. در اين فرايند بمباران كاتد توسط يون هايي كه به آن برخورد مي كند نقش اصلي را ايفا مي كند. مشخصه جريان ولتاژ قوس الكتريكي يعني بستگي جريان الكتريكي در قوس الكتريكي به ولتاژ بين الكترودها ، ويژگي خاصي دارد. در فلزات و الكتروليت ها جريان متناوب با ولتاژ افزايش مي يابد «قانون اهم). در صورتيكه براي رسانش القايي گازها جريان ابتدا با ولتاژ زياد مي شود، سپس اشباع شده و مستقل از ولتاژ است. بنابر اين افزايش جريان در تخليه قوسي به اندازه مقاومت در شكاف بين الكترودها و ولتاژ بين آنها منجر مي شود. براي اينكه تاباني قوس پايدار بماند رئوستا يا مقاومت الكتريكي قوي ديگري را بايد به طور متوالي به آن بست.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:59  توسط 66  | 

 

از مهمترین کاربردهای ولتاژ فشار قوی DC ، می توان به موارد زیر اشاره نمود :

  • انجام کارهای تحقیقاتی و مطالعاتی روی عایق ها : برای مطالعه رفتار عایق ها از ولتاژهای DC استفاده می کنند . اگر عایقی در برابر ولتاژهای فشار قوی DC ، استقامت داشته باشد ، آنگاه حتماً در برابر ولتاژهای فشار قوی AC نیز استقامت خواهد داشت .
  • در فیزیک برای شتاب دهنده ها ( مشابه شتاب دادن پروتون یا الکترون در تلویزیون ) : درمیدان های الکتریکی قوی یکنواخت ، به ذرّات الکتریکی نیروی زیادی وارد شده و شتابمی گیرند .
  • در پزشکی برای تولید اشعه X .
  • در صنایع برای فیلتر کردن دود خروجی نیروگاه های حرارتی و کارخانجات سیمان و پاشیدن رنگ : ذرّات آلوده در بین الکترودهای فلزی میدان الکتریکی به صورت ذرّات باردار در می آیند و با سرعت به سمت الکترودهای مذکور جذب می شوند . این الکترودها در مسیر دودکش خروجی نصب می گردند و بدین وسیله ، از ورود ذرّات آلوده به هوای آزاد جلوگیری می شود . دررنگ آمیزی الکترواستاتیکی نیز ذرّات رنگ به صورت ذرّات باردار ، با سرعت روی سطح مورد نظر پاشیده می شوند . از ویژگی های این نوع رنگ آمیزی ، یکنواختی ضخامت رنگ در تمام نقاط سطوح و قابلیت تنظیم ضخامت رنگ روی سطح مورد نظر است .


  • در مخابرات برای ایستگاه های پخش تلویزیونی .
  • برای آزمایش کابل های فشار قوی AC با طول زیاد : اگر کابل های فشار قوی AC را بخواهیم با ولتاژهای بالای AC آزمایش کنیم ، به علت ظرفیت خازنی نسبتاً بالای کابل های با طول زیاد ، به جریان زیادی نیاز می باشد . همچنین تخلیه های مکرر در حفره های داخلی احتمالی ، باعث کاهش درجۀ عایقی آنها می شود . بنابراین ، آزمایش آنها با ولتاژ DC مناسب تر است . اگر چه در این آزمایش ها از نظر شرایط کاری ، کابلی که با ولتاژ AC کار می کند متفاوت می باشد ، ولی اعتبار آن از دیدگاه تجربی پذیرفته می شود ؛ زیرا هدف از این کار ، بررسی توزیع شدت میدان درون عایق می باشد .
  • برای آزمایش تجهیزات مورد استفاده در خطوط انتقال HVDC : در خطوط انتقال HVDC ، نیاز به جریان های خیلی زیادی است . از سال 1970 به بعد ، تریستورهای فشار قوی با تحمل ولتاژ بالاتری ساخته شده است که در یکسوکننده های خطوط مورد نظر به کار می رود . در سال 1972 ، تریستورهای تا قدرت kw 70 و در سال 1983 با قدرت kw1000 ساخته شده است . در خطوط انتقال HVDC ، عموماً از یکسوکننده های 12 پالس استفادهمی شود تا اعوجاج ولتاژ خروجی بسیار کم باشد
+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:57  توسط 66  | 

مواد پليمري‌ كه‌ براي‌ حفاظت‌ در برابر شعله‌ در عايق‌ كابلها به‌ كار مي‌رود در همه‌ جنبه‌هارضايت‌ بخش‌ نيستند، زيرا پاره‌اي‌ تركيبات‌ آنها،در حين‌ آتش‌ سوزي‌ مقادير زيادي‌ دود ومواد شيميايي‌ خورنده‌ توليد مي‌كنند. شركتهاي‌ برق‌ به‌ تركيبات‌ جديد عايق‌ ضد آتش‌سوزي‌ پليمري‌ براي‌ كابلها كه‌ در ولتاژهاي‌ كم‌ و متوسط استفاده‌ مي‌شوند، نياز دارند.فعاليت‌ اكتشافي‌ EPRI در اين‌ زمينه‌، نمونه‌اي‌ از ارزش‌ يك‌ پژوهش‌ در ارتباط و مشاوره‌نزديك‌ با توليد كنندگان‌ پليمر، تامين‌ كنندگان‌ مواد شيميايي‌، توليد كنندگان‌ كابل‌ وشركتهاي‌ برق‌ است‌. نتيجه‌ اين‌ پژوهش‌، توليد دو تركيب‌ پليمري‌ است‌ كه‌ امكان‌ تاخير درآتش‌ سوزي‌ را فراهم‌ مي‌آورد و اكنون‌ در حال‌ ارزيابي‌ از طرف‌ يك‌ توليد كننده‌ كابل‌ براي‌توليد تجاري‌ است‌. نوشتار حاضر درباره‌ چگونگي‌ روند اجراي‌ اين‌ پژوهش‌ و كشف‌ فرمول‌جديد و چگونگي‌ همكاري‌ گروههاي‌ مختلف‌ با EPRI در اين‌ زمينه‌ بحث‌ مي‌كند.
شايد پليمرهاي‌ مصنوعي‌ كه‌ شامل‌زنجيره‌اي‌ از واحدهاي‌ ملكولي‌اند كه‌ تعدادو ساختار شيميايي‌ آنها، خواص‌ ماده‌ راتعيين‌ مي‌كند، قابل‌ تغييرترين‌ گروه‌ از موادموجود باشند. براي‌ تغيير و اصلاح‌ پليمري‌مصنوعي‌ با گستره‌ وسيعي‌ از مشخصات‌مورد نظر، انواع‌ گوناگوني‌ از افزودنيها بكارمي‌رود. فرمولاسيونهاي‌ اوليه‌ پليمرها دراوايل‌ قرن‌ بيستم‌ توليد شدند و امروزپليمرها براي‌ مصارف‌ بسيار متنوعي‌ از گيره‌سر تا اجزاي‌ شاتل‌هاي‌ فضايي‌ بكارمي‌روند. چنين‌ به‌ نظر مي‌رسد كه‌ تركيبات‌پليمري‌ از نظر تعداد بي‌ پايان‌ است‌. شناخته‌شده‌ترين‌ پليمرها، پلي‌ اولفين‌ها مانند پلي‌پروپيلين‌ و پلي‌ اتيلين‌ ماده‌ اوليه‌ هزاران‌محصول‌ مورد نياز روزمره‌ انسانها مانندكيسه‌هاي‌ پلاستيكي‌، بطري‌ شامپو، گلدان‌،سطل‌ آشغال‌ و...است‌.

در صنعت‌ برق‌، عايقكاري‌ انواع‌تجهيزات‌ توزيع‌ يا انتقال‌ شامل‌ كابلها،ترانسفورماتورها، خازنها و ماشينهاي‌ دوار به‌وسيله‌ پليمرها انجام‌ مي‌شود. دوار به‌ وسيله‌پليمرها انجام‌ مي‌شود. اجزاي‌ اوليه‌ عايق‌سيمها و كابلها، پلي‌ اولفين‌ها و پليمرهاي‌اولفين‌ است‌. براي‌ پليمرها مصارف‌ معمولي‌ديگري‌ در صنعت‌ برق‌ وجود دارد كه‌ كمترشناخته‌ شده‌اند. اين‌ مصارف‌ عبارتند از:غشاء جداكننده‌، الكتروليت‌ باتريهاي‌پيشرفته‌، بدنه‌ خودروهاي‌ برقي‌، پوششهاي‌ضد خوردگي‌، لوله‌، قطعات‌ سيستمهاي‌كنترل‌ محيط زيست‌ و دستكش‌ كارگران‌خطوط نيرو.
پليمرهايي‌ مانند پلي‌ اولفين‌ها هم‌ براي‌روكش‌ و هم‌ به‌ عنوان‌ عايق‌ كابلهاي‌ انتقال‌نيرو استفاده‌ مي‌شوند. مشخصات‌ اين‌ نوع‌پليمرها مانند عدم‌ هدايت‌ الكتريكي‌ كه‌ افت‌انرژي‌ را به‌ حداقل‌ مي‌رساند، مصرف‌ آنها را به‌ عنوان‌ عايق‌ و روكش‌ كابلها مناسب‌ كرده‌است‌. اين‌ پليمرها كه‌ توليد آنها ساده‌ است‌،در دماهاي‌ بالا نرم‌ بوده‌ و امكان‌قالب‌گيري‌،پرس‌ كاري‌ و اكستروژن‌ آنها دراشكال‌ و ابعاد مختلف‌ وجود دارد. اين‌پليمرها بعد از سرد شدن‌ سخت‌ مي‌شوند.پليمرها با خواص‌ مكانيكي‌ متفاوت‌ (نرم‌ وتاشو تا بسيار سخت‌) براي‌ كاربردهاي‌ خاص‌مناسب‌اند.
با وجود اين‌ مزاياي‌ فرمولاسيونهاي‌ پلي‌اولفين‌ خالص‌ به‌ دليل‌ اين‌ كه‌ از كربن‌ وهيدروژن‌ تشكيل‌ شده‌، مستعد شعله‌ وري‌است‌. گرچه‌ آتش‌ سوزي‌ كابلها به‌ ندرت‌اتفاق‌ مي‌افتد ولي‌ از آنجا كه‌ اغلب‌ كابلهاي‌ولتاژ پايين‌ و متوسط تا پنج‌ كيلووات‌) درشبكه‌هاي‌ توزيع‌ و نيروگاهها به‌ صورت‌فشرده‌ در راك‌ها = سيني‌ها، كانال‌ها ومحفظه‌ها قرار مي‌گيرند، امكان‌ آتش‌ سوزي‌وجود دارد. براي‌ كاهش‌ احتمال‌ آتش‌ سوزي‌كابلها. عايق‌ و روكش‌ كابلها در مناطقي‌ كه‌احتمال‌ آتش‌ سوزي‌ وجود دارد ازپليمرهايي‌ كه‌ هالوژنها و يا هيدروكسيدفلزات‌ غير هالوژنه‌ (مانندتري‌ هيدرات‌آلومينيوم‌) به‌ تركيب‌ آنها اضافه‌ شده‌ است‌،ساخته‌ مي‌شوند. اگر چه‌ افزودن‌ اين‌تركيبات‌ به‌ پليمرها مقاومت‌ آنها را در مقابل‌آتش‌ سوزي‌ افزايش‌ مي‌دهد ولي‌ اين‌تركيبات‌ معايبي‌ نيز دارند.
در هنگام‌ آتش‌ سوزي‌، پلي‌ وينيل‌ كلرايدگاز هيدروژن‌ هاليد آزاد مي‌كند. اين‌ گاز وقتي‌با اكسيد آنتيمون‌ تركيب‌ شود يك‌ سيستم‌ضد آتش‌سوزي‌ به‌ وجود مي‌آورد. در اين‌صورت‌ مقادير قابل‌ توجهي‌ دود توليدمي‌شود كه‌ مسموميت‌ زا و ناايمن‌ است‌.همچنين‌ گازهاي‌ هيدروژن‌ هاليد، خورنده ‌بوده‌ و لذا خطر خوردگي‌ تجهيزات‌ وجوددارد. پليمرهاي‌ حاوي‌ آلومينيم‌ تري‌ هيدرات‌در هنگام‌ آتش‌ سوزي‌ توليد آب‌ كرده‌ وشعله‌ را مهار مي‌كنند ولي‌ مقادير زيادي‌ آلومينيوم‌تري‌ هيدرات‌ بايد به‌ پليمر اضافه ‌شود تا خاصيت‌ ضد آتش‌ سوزي‌ به‌ وجودآيد. افزودن‌ اين‌ ماده‌ خواص‌ مكانيكي‌ پليمررا تحت‌ تاثير قرار مي‌دهد به‌ قسمي‌ كه‌ پليمر حاصل‌، سفت‌ و مستعد ترك‌ خوردن‌ يا نازك‌شدن‌ بر اثر كشيدگي‌ و سايش‌ است‌. از سوي‌ديگر به‌ دليل‌ خاصيت‌ هدايت‌ الكتريكي‌هيدرات‌ آلومينيوم‌، تركيب‌ پليمري‌ اين‌ ماده‌تنها براي‌ روكش‌ كابلها مناسب‌ است‌ و به‌دليل‌ پرت‌ انرژي‌ ناشي‌ از هدايت‌ الكتريكي‌براي‌ عايق‌ كابلها الكتريكي‌ براي‌ عايق‌ كابلهامناسب‌ نيست‌.
طرح‌ مساله‌
از اواخر سالهاي‌ دهه‌ 1980، EPRIتحقيقاتي‌ را براي‌ مشخص‌ كردن‌ مصارف‌جديد پليمرهاي‌ پيشرفته‌ دنبال‌ مي‌كرد. درسال‌ 1991، EPRI براي‌ آگاهي‌ از آخرين‌فعاليتهاي‌ تحقيقاتي‌ پليمر، پروفسور الي‌پيرس‌ (EliPearec) سرپرست‌انستيتوي‌ تحقيقات‌ پليمر دانشگاه‌ پلي‌تكنيك‌ نيويورك‌ را دعوت‌ به‌ همكاري‌ كرد.پيرس‌ در مورد فن‌ آوريها و مصارف‌ جديدپليمرها، نظرات‌ مهمي‌ داشت‌. اين‌ ديدگاهها،سيمور آلبرت‌ (يكي‌ از اعضاي‌ EPRI) رامتقاعد كرد كه‌ فن‌ آوري‌ پيشرفته‌، خواهدتوانست‌ فرمولاسيون‌ جديدي‌ از پليمرهاي‌ضد حريق‌ مورد نياز صنعت‌ برق‌ براي‌ عايق‌كاري‌ كابلها قدرت‌ توليد كند.
آلبرت‌ مي‌گويد: >ساير محققان‌ سعي‌كرده‌ بودند كه‌ مساله‌ را به‌ استفاده‌ فعلي‌ ازافزودنيهاي‌ هالوژن‌ و هيدروكسيد فلزات‌ محدود كنند. ما با اين‌ پرسش‌ كه‌ (آيا راه‌ديگري‌ وجود دارد؟) شروع‌ كرديم‌. ما بدنبال ‌افزودنيهاي‌ ضد حريق‌ ديگري‌ بوديم‌ كه‌ همه‌محصولات‌ جانبي‌ و ناخواسته‌ از آتش‌سوزي‌ را حذف‌ كند. نتيجه‌ كار ممكن‌ بود فقط محصولات‌ فعلي‌ را اندكي‌ اصلاح‌ كند.ولي‌ ما به‌ امكان‌ توليد عايق‌ ضد حريق‌پليمري‌ با خواص‌ خوب‌ فيزيكي‌، امكان‌توليد آسان‌، قيمت‌ ارزان‌ و غير آلاينده‌ محيطزيست‌ فكر مي‌كرديم‌.
با اين‌ طرز تفكر بر نشتاين‌ (متخصص‌پليمر در EPRI) و جان‌ استرينجر (دانشمندعلم‌ مواد و فن‌ آوريهاي‌ اجرايي‌ در بخش‌تحقيقات‌ استراتژيك‌) با پيرس‌ در موردامكان‌ توسعه‌ پليمري‌ ضد حريق‌ جديد وارد مذاكره‌ شدند. وي‌، ادويل‌ (Ed Wil) استاددانشگاه‌ پلي‌ تكنيك‌ نيويورك‌ كه‌ داراي ‌سابقه‌ كار در صنايع‌ شيميايي‌ بود را براي‌ اين‌كار معرفي‌ كرد. ويل‌ پيشنهاد پروژه‌ تحقيقاتي‌در اين‌ زمينه‌ را آماده‌ كرد. پيشنهاد پروژه‌ داراي‌ اين‌ ويژگي‌ بود كه‌ چنانچه‌ بخشهايي‌ ازآن‌ از حمايت‌ مالي‌ برخوردار نمي‌شد قابل‌حذف‌ بود. بخش‌ تحقيقات‌ اكتشافي‌ EPRI تامين‌ بودجه‌ اين‌ طرح‌ سه‌ ساله‌ را به‌ عهده‌گرفت‌. اگر چه‌ ويل‌ هدف‌ پروژه‌ را مي‌دانست ‌اما نقشه‌ روشني‌ براي‌ رسيدن‌ به‌ آن‌ نداشت‌.براي‌ پي‌ بردن‌ به‌ نيازهاي‌ واقعي‌ صنعت‌برق‌، برنشتاين‌، ويل‌ را به‌ نمايندگان‌ شركت‌ برق‌ اديسون‌ نيويورك‌ معرفي‌ كرد. ويل‌ باكمك‌ نمايندگان‌ صنعت‌ برق‌ و با جست‌وجودر انتشارات‌ علمي‌ تلاش‌ كرد كه‌ اطلاعاتي‌در مورد پليمرها جمع‌ آوري‌ كند. وي‌ بانمايندگاني‌ از شركتهاي‌ Akoz Nobe l،ATqT، كابلسازي‌ BICC،BP، DuPont،Mosanto، South Wire، UnionCarbide گفتگو كرد و آنها راهنمايي‌هاي‌ارزشمندي‌ در مورد استانداردهاي‌ پليمرهاي‌ضد حريق‌ و روشهاي‌ آزمايش‌ آن‌ ارايه‌كردند. ويل‌ با مشورت‌ شركتهاي‌ توليدكننده‌كابل‌ و انستيتو ملي‌ استاندارد و فن‌آوري‌ و باكمك‌ EBRI براي‌ انتخاب‌ مواد ضد آتش‌سوزي‌ آزمايشهايي‌ انجام‌ داد.
ويل‌ مي‌گويد: ما در خلاء تحقيق‌نمي‌كرديم‌. روش‌ كار مشخص‌ بود و افرادي‌وجود داشتند كه‌ از آنها سوال‌ مي‌كرديم‌. باجمع‌آوري‌ نظرات‌ صنعتگران‌ برق‌،توليدكنندگان‌ و اطلاعات‌ بازار ما پي‌ برديم ‌كه‌ فرمولاسيونهاي‌ پليمري‌ ضد آتش‌سوزي‌بايد چگونه‌ باشند و چه‌ تركيباتي‌ در دسترس‌است‌. كدام‌ فرمولاسيونها از نظر صنعت‌ برق‌ترجيح‌ دارد و براي‌ آينده‌ چه‌ چيز مورد نيازاست‌.<
آلبرت‌ مي‌گويد >در تحقيقات‌، همه‌ چيزآن‌ گونه‌ كه‌ فكر مي‌كنيد موفقيت‌آميز نيست‌ولي‌ معمولا اطلاعات‌ خوبي‌ در موردموضوع‌ به‌ دست‌ مي‌آيد.
پس‌ از مرحله‌ جمع‌ آوري‌ اطلاعات‌،مرحله‌ آزمايشهاي‌ پروژه‌ شروع‌ شد. در اين‌مرحله‌، از محققي‌ به‌ نام‌ وي‌ مينگ‌ زو(Wiminq Zhu) از دانشگاه‌ ايالتي‌ اوكلاهما به‌ عنوان‌ دانشجوي‌ دوره‌ فوق‌ دكتراثبت‌ نام‌ بعمل‌ آمد. وظيفه‌ وي‌ توليدمخلوطهاي‌ مختلف‌ پليمري‌ و انجام‌محاسبات‌ آزمايشگاهي‌ بود. پس‌ از چنددوره‌ سعي‌ و خطا ويل‌ و زو فرمولاسيون ‌ضد حريق‌ خوبي‌ به‌ دست‌ آوردند. از نظرتوليد، اين‌ فرمولاسيون‌ نويد بخش‌ بود. افزودنيهاي‌ مورد نظر قابل‌ تهيه‌ و ارزان‌بودند. فرمولاسيون‌ مزبور شامل‌ ملامين‌،پلي‌ فنيلين‌ اكسيد (PPO) و سيلانتيد كالوين‌بود. ويل‌ مي‌گويد: >از اين‌ كه‌ فرمولاسيون‌ضد آتش‌سوزي‌ نويد بخشي‌ به‌ دست‌ آمد،بسيار خشنود شديم‌. ما دريافتيم‌ كه‌فرمولاسيون‌ به‌ دست‌ آمده‌ با چند نمونه‌ ازپلي‌اولفين‌ها كه‌ داراي‌ مزاياي‌ آشكار است‌، همخواني‌ دارد. سه‌ جزء افزودني‌ ضروري‌براي‌ تشكيل‌ اين‌ فرمولاسيون‌ ارزان‌ قيمت‌ ومناسب‌ عايق‌بندي‌ كابلهاي‌ ولتاژ پايين‌ است‌.
سپس‌ توجه‌ ويل‌ و زو معطوف‌ به‌ يافتن‌فرمولاسيون‌ مناسب‌ روكش‌ شد به‌ نحوي‌ كه‌اجازه‌ سرايت‌ گرما و شعله‌ را از عايق‌ ندهد.بعد از فعاليتهاي‌ زياد آزمايشگاهي‌ با استفاده‌از تركيبات‌ ملامين‌ نتايج‌ مطلوب‌ به‌ دست‌ آمد.
آزمايشهاي‌ ويل‌ و زو بر روي‌ صفحات‌پليمري‌ انجام‌ شده‌ بود. براي‌ اين‌ كه‌ از اين‌پليمرها به‌ عنوان‌ عايق‌ و روكش‌ كابل‌استفاده‌ شود. بايد امكان‌ اكسترود پليمرهاوجود داشته‌ باشد. محققان‌ بنا به‌ تقاضاي‌EPRI در آزمايشگاه‌ نمونه‌هاي‌ كوچك‌اكسترود فرمولا سيونهاي‌ جديد را نشان‌ دهند. ولي‌ هنوز راه‌ زيادي‌ تا تجاري‌ شدن‌نتايج‌ تحقيقات‌ در پيش‌ است‌. بر اساس‌توافق‌ نامه‌اي‌، ليسانس‌ استفاده‌ از اين‌ فن‌آوري‌ به‌ شركت‌ BICC واگذار شده‌ است‌.شركت‌ BICC تلاش‌ مي‌كند كه‌ نتايج‌ به‌دست‌ آمده‌ را تجاري‌ كند.
استرينجر مي‌گويد: >تحقيقات‌ اكتشافي‌نه‌ تنها جنبه‌ علمي‌ دارد بلكه‌ جنبه‌ تجاري‌آنها بايد مد نظر باشد. توليدات‌ و روندهايي‌كه‌ از پژوهشهاي‌ اكتشافي‌ حاصل‌ مي‌شودباعث‌ سود آوري‌ شركتها است‌ و آنها را به ‌سوي‌ مرزهاي‌ نو سوق‌ مي‌دهد. امروزه‌ روندتقاضاي‌ فن‌ آوري‌ پيشرفته‌ توسط مشتريان‌سريعتر از گذشته‌ است‌. يكي‌ از راههاي‌ اجابت‌ اين‌ تقاضا ادامه‌ كار در زمينه‌هايي‌است‌ كه‌ در آن‌ اميد اكتشاف‌ و نوآوري‌ است‌. البته‌ احتمال‌ شكست‌ و ناكامي‌ نيز وجوددارد. ولي‌ بايد گفت‌ تنها شكست‌ حتمي‌ دردرازمدت‌ ناشي‌ از دست‌ روي‌ دست‌ گذاشتن‌و تلاش‌ نكردن‌ خواهد بود.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:57  توسط 66  | 

در حالت‌ كلي‌ ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ به‌ دو گروه‌ عمده‌ تقسيم‌ مي‌شوند.اين‌ دو گروه‌ عبارتند از: ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ سلفي‌ يا مغناطيسي‌ وترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژخازني‌ (CVT-capacitor voltage transformer). در سيستمهاي‌ قدرت‌، تا ولتاژ 145 كيلوولت‌ استفاده‌ از ترانسفورماتورهاي ‌اندازه‌گيري‌ ولتاژ سلفي‌ و در سيستمهاي‌ قدرت‌ با ولتاژهاي‌ بالاتر، استفاده‌ ازترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ خازني‌ مقرون‌ به‌ صرفه‌ است‌.
در عمل‌، دو نوع‌ مختلف‌ ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ خازني‌ با خازن‌ بالا وخازن‌ پايين‌ ساخته‌ مي‌شود. با توجه‌ به‌ كلاس‌ دقت‌ ترانسفورماتور، در شرايط كار مختلف‌آن‌، مانند آلودگي‌ محيط و نوسانات‌، تغييرات‌ فركانس‌ و پاسخ‌ حالت‌ گذاري‌ سيستم‌، ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ خازني‌ با خازن‌ بالا بهترين‌ انتخاب‌ است‌. درسيستمهاي‌ PLC، ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ خازني‌، مورد استفاده‌ قرارمي‌گيرند. همان‌ طور كه‌ مي‌دانيم‌ با استفاده‌ از سيستمهاي‌ PLC مي‌توان‌ مانند خطوطمخابراتي‌، انتقال‌ اطلاعات‌ را با خطوط فشار قوي‌ انجام‌ داد. محدوه‌ كار يك‌ ترانسفورماتوراندازه‌گيري‌ ولتاژ در سيستمهاي‌ اندازه‌گيري‌، بين‌ 80 تا 120 درصد ولتاژ نامي‌ و درسيستمهاي‌ محافظتي‌، بين‌ 05/0 تا 5/1 يا 9/1 درصد ولتاژ نامي‌ آن‌ سيستم‌ تغيير مي‌كند.

در عمل‌ با استفاده‌ از يك‌ مقاومت‌ سري‌ مي‌توان‌ محدوده‌ اندازه‌گيري‌ يك‌ ولت‌ متر راافزايش‌ داد اين‌ روش‌ معمولا در سيستمهايي‌ كه‌ ولتاژ بالايي‌ ندارند استفاده‌ مي‌شود ولي‌ اگرسيستمي‌ ولتاژ بالا داشته‌ باشد اين‌ روش‌ مشكلات‌ فراواني‌ خواهد داشت‌. در سيستمهاي‌ولتاژ بالا، ايزولاسيون‌ مقاومتهاي‌ سري‌ موجود در ولت‌ مترها (براي‌ اندازه‌گيري‌ ولتاژسيستم‌) مقرون‌ به‌ صرفه‌ نبوده‌ و علي‌ رغم‌ ايزولاسيون‌ مقاومتهاي‌ سري‌، با توجه‌ به‌ ولتاژبالاي‌ سيستم‌، وصل‌ سيستم‌ فشار قوي‌ به‌ دستگاه‌ اندازه‌گيري‌ بدون‌ استفاده‌ ازترانسفورماتور ولتاژ، كار خطرناكي‌ است‌. با توجه‌ به‌ موارد فوق‌ در سيستمهاي‌ قدرت‌ براي ‌اندازه‌گيري‌ ولتاژ، از ترانسفورماتورهاي‌ اندازه‌گيري‌ استفاده‌ مي‌كنند.

ضريب‌ افزايش‌ ولتاژ ترانسفورماتور
در يك‌ سيستم‌ قدرت‌، ترانسفورماتوراندازه‌گيري‌ ولتاژ سلفي‌ يا خازني‌، معمولا بين‌ فاز و زمين‌ قرار مي‌گيرد. در سيستم‌ سه‌ فاز در لحظه‌ نوسانات‌ سيستم‌، ممكن‌است‌ ولتاژ دوسر ترانسفورماتور اندازه‌گيري‌ ولتاژ به‌ ولتاژهاي‌ بالايي‌ افزايش‌ يابد. باتوجه‌ به‌ استاندارد IECضريب‌ افزايش‌ ولتاژترانسفورماتور معمولا 2/1 انتخاب‌مي‌شود. يك‌ ترانسفورماتور اندازه‌گيري‌ولتاژ بايد به‌ صورت‌ مداوم‌ در ولتاژي‌مساوي‌ ولتاژ نامي‌، ضرب‌ در ضريب‌افزايش‌ ولتاژ ترانسفورماتور، به‌ كار خودبدون‌ هيچ‌ مشكلي‌ ادامه‌ داده‌ و در اين‌ ولتاژ،ترانسفورماتور تحت‌ هر شرايطي‌ به‌ حالت‌اشباع‌ وارد نشود.
كلاس‌ دقت‌ ترانسفورماتورهاي‌اندازه‌گيري‌ ولتاژ:
مانند ترانسفورماتورهاي‌ اندازه‌گيري‌جريان‌، در ترانسفورماتورهاي‌ اندازه‌گيري‌ولتاژ نيز كلاس‌ دقت‌ ترانسفورماتور با توجه‌به‌ مورد استفاده‌ آن‌ در سيستمهاي‌ حفاظتي‌يا اندازه‌گيري‌ تغيير مي‌كند. درترانسفورماتورهاي‌ اندازه‌گيري‌ جريان‌، هر يك‌ از سيم‌ پيچهاي‌ ثانويه‌ ترانسفورماتور در اطراف‌ هسته‌هاي‌ جداگانه‌اي‌ پيچيده‌مي‌شوند. برعكس‌ اگر ترانسفورماتورهاي‌اندازه‌گيري‌ ولتاژ داراي‌ سيم‌ پيچهاي‌ ثانويه‌متعددي‌ باشد تمام‌ اين‌ سيم‌ پيچها در اطراف‌يك‌ هسته‌ مشترك‌ قرار مي‌گيرند. درترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ، افت‌ولتاژ در سيم‌ پيچ‌ اوليه‌ با مجموع‌ جريان‌بارهاي‌ سيم‌ پيچهاي‌ ثانويه‌ آن‌ رابطه‌ مستقيم‌ دارد.

ساختمان‌ ترانسفورماتورهاي‌اندازه‌گيري‌ ولتاژ:
ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژمانند ترانسفورماتورهاي‌ اندازه‌گيري‌ جريان‌،انواع‌ مختلفي‌ ندارند. در سيستمهاي‌ ولتاژخيلي‌ زياد، معمولا اتصال‌ كاسكادترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ مورداستفاده‌ قرار مي‌گيرد. البته‌ تحت‌ شرايط ولتاژبالا استفاده‌ از ترانسفورماتورهاي‌ ولتاژ خازني‌، مقرون‌ به‌ صرفه‌ است‌.

مشخصه‌هاي‌ انتخاب‌ ترانسفورماتور ولتاژ:
اگر كلاس‌ دقت‌ ترانسفورماتور و توان‌نامي‌ آن‌ خيلي‌ زياد انتخاب‌ شود، ابعادترانسفورماتور بسيار بزرگ‌ بوده‌ و ساخت‌ آن‌مقرون‌ به‌ صرفه‌ نخواهد بود. در نتيجه‌باتوجه‌ به‌ مورد استفاده‌ مناسب‌ترانسفورماتور بايد كلاس‌ دقت‌ و توان‌ آن‌ درنظر گرفته‌ شود.
سيم‌ پيچهاي‌ ثانويه‌ يك‌ ترانسفورماتوراندازه‌گيري‌ ولتاژ از همديگر جدا نبوده‌ و دراطراف‌ يك‌ هسته‌ مشترك‌، پيچيده‌ مي‌شونددر نتيجه‌ اگر يكي‌ از سيم‌ پيچهاي‌ ثانويه‌ترانسفورماتور به‌ دستگاه‌ اندازه‌گيري‌ و سيم‌پيچ‌ ديگر به‌ دستگاه‌ حفاظتي‌ (مانند رله‌)وصل‌ شود در اين‌ حالت‌ براي‌ انتخاب‌ توان‌نامي‌ و همچنين‌ كلاس‌ دقت‌ ترانسفورماتورمثالي‌ را در نظر مي‌گيريم‌:
-دستگاه‌ اندازه‌گيري‌ با توان‌: 30ولت‌ آمپر-كلاس‌ دقت‌ دستگاه‌ اندازه‌گيري‌: 5/0
-دستگاه‌ حفاظتي‌ (رله‌) باتوان‌: 120ولت‌آمپر
-كلاس‌ دقت‌ دستگاه‌ حفاظتي‌ (رله‌): 3P
با توجه‌ به‌ مقادير داده‌ شده‌، كلاس‌ دقت‌ترانسفورماتور اندازه‌گيري‌ ولتاژ 5/0 و توان‌آن‌ 150 ولت‌ آمپر انتخاب‌ مي‌شود. در ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژ، اگربيش‌ از يك‌ سيم‌ پيچ‌ ثانويه‌ مورد نياز باشد باتوجه‌ به‌ چگونگي‌ استفاده‌ از بارها(كه‌ درادامه‌ شرح‌ داده‌ مي‌شود) و همچنين‌ با در نظر گرفتن‌ كلاس‌ دقت‌ آنها ترانسفورماتور انتخاب‌ مي‌شود:
(a): يكي‌ از سيم‌ پيچهاي‌ ثانويه‌ باردار بوده‌ وسيم‌ پيچهاي‌ ديگر بدون‌ بار باشد.
(b): تمام‌ سيم‌ پيچهاي‌ ثانويه‌ باردار باشد.
بار حرارتي‌ يك‌ ترانسفورماتوراندازه‌گيري‌ ولتاژ، با در نظر گرفتن‌ ضريب‌ولتاژ آن‌، به‌ بيشترين‌ مقدار باري‌ گفته‌مي‌شود كه‌ ترانسفورماتور بتواند بدون‌افزايش‌ درجه‌ حرارت‌ از مقدار مشخص‌شده‌، آن‌ بار را تغذيه‌ كند. با توجه‌ به‌استاندارد IEC-186 كلاسهاي‌ دقت‌دستگاههاي‌ اندازه‌گيري‌ بين‌ 80 تا 120درصد ولتاژ نامي‌ و بين‌ 25 تا 100 درصد بارنامي‌ و كلاسهاي‌ دقت‌ دستگاههاي‌ حفاظتي‌بين‌ 5 درصد ولتاژ نامي‌ تا Vش برابر آن‌ وهمچنين‌ بين‌ 25 تا 100 درصد بار نامي‌صادق‌ هستند. دستگاههاي‌ اندازه‌گيري‌ و حفاظتي‌مدرن‌، تلفات‌ كمتري‌ دارند در نتيجه‌ ممكن‌است‌ بار كل‌ ترانسفورماتور اندازه‌گيري‌ ولتاژاز 25 درصد مقدار بار نامي‌ آن‌ كوچكتر باشددر نتيجه‌ مي‌توان‌گفت‌ كه‌ در اين‌ حالت‌ خطاي‌ نسبت‌ دورها افزايش‌ خواهد يافت‌. در ترانسفورماتورهاي‌اندازه‌گيري‌ ولتاژ، خطاي‌ نسبت‌ دورها دربارهاي‌ نزديك‌ به‌ بار نامي‌ ترانسفورماتور به‌مقدار مينيمم‌ خود مي‌رسد.
در حالت‌ كلي‌ با توجه‌ به‌ موارد فوق‌مي‌توان‌ گفت‌ كه‌ بار نامي‌ ترانسفورماتور ولتاژ بهتر است‌ با مجموع‌ بارهاي‌ وصل‌ شده‌به‌ آن‌ برابر باشد.

خطاهاي‌ اندازه‌گيري‌ترانسفورماتور ولتاژ:
در حالت‌ ايده‌ آل‌، افت‌ ولتاژ در روي‌امپدانس‌ سيم‌ پيچهاي‌ اوليه‌ و ثانويه‌ ترانسفورماتور برابر صفر ولت‌ بوده‌ و درنتيجه‌ رابطه‌ بين‌ ولتاژ اوليه‌ و ثانويه‌ آن‌عبارت‌ خواهد بود از:
در ترانسفورماتورهاي‌ اندازه‌گيري‌ ولتاژموجودر در عمل‌، به‌ علت‌ افت‌ ولتاژ در روي‌ مقاومت‌ سيم‌ پيچهاي‌ اوليه‌ و ثانويه‌ وهمچنين‌ به‌ علت‌ افت‌ ولتاژ در راكتانسهاي‌سيم‌ پيچهاي‌ اوليه‌ و ثانويه‌ (ناشي‌ از شارپراكندگي‌ موجود در سيم‌ پيچها)، رابطه‌ اوليه ‌و ثانويه‌ يك‌ ترانسفورماتور حقيقي‌ خواهد بود.
با توجه‌ به‌ مواردي‌ كه‌ مطرح‌ شد،خطاي‌ موجود در ترانسفورماتورهاي‌ ولتاژحقيقي‌ را مانند ترانسفورماتورهاي‌ جريان‌ باخطاي‌ نسبت‌ دورها و خطاي‌ زاويه‌اي‌ مي‌توان‌ نشان‌ داد.
اگر ولتاژ ثانويه‌ خيلي‌ بزرگ‌ باشد،خطاي‌ نسبت‌ دورها مثبت‌ خواهد بود. ازطرفي‌ اگر ولتاژ ثانويه‌ نسبت‌ به‌ ولتاژ اوليه‌پيش‌ فاز باشد خطاي‌ زاويه‌اي‌ مثبت‌مي‌شود.
براي‌ محاسبه‌ خطاي‌ نسبت‌ دورها وخطاي‌ زاويه‌ در يك‌ ترانسفورماتور اندازه‌گيري‌ ولتاژ، مدار معادل‌ الكتريكي‌ يك‌ترانسفورماتور حقيقي‌ كه‌ به‌ طرف‌ ثانويه‌انتقال‌ يافته‌ است‌ را در نظر مي‌گيريم‌.
همان‌ طور كه‌مي‌دانيم‌ امپدانس‌ معادل‌ سيم‌پيچها ازمجموع‌ مقاومت‌ اهمي‌ سيم‌پيچ‌ و راكتانس‌ناشي‌ از سيل‌ پراكندگي‌ شار اطراف‌ سيم‌ پيچ‌به‌ دست‌ مي‌آيد. افت‌ ولتاژ در امپدانسهاي‌اوليه‌ و ثانويه‌ ترانسفورماتور را در دو حالت‌بارداري‌ و بي‌ باري‌ مورد بررسي‌ قرار مي‌دهيم‌.
از آن‌ جا كه‌، در حالت‌ بي‌ باري‌ به‌ علت‌جريان‌ كم‌ موجود در مدار، افت‌ ولتاژ درامپدانس‌ سيم‌ پيچ‌ اوليه‌ ترانسفورماتور مقدارناچيزي‌ است‌ لذا در اين‌ قسمت‌ فقط افت‌ولتاژ، در حالت‌ بارداري‌ ترانسفورماتور رامورد بررسي‌ قرار مي‌دهيم‌. در حالت‌بارداري‌، شدت‌ جريان‌ عبوري‌ از امپدانس‌ معادل‌ هسته‌، بسيار كوچكتر از شدت‌ جريان‌بار ترانسفورماتور بوده‌ و در نتيجه‌ از امپدانس‌ معادل‌ هسته‌صرف‌نظر شده‌ است‌.

تغييرات‌ خطاهاي‌ اندازه‌گيري‌ نسبت‌به‌ تغييرات‌ ولتاژ:
در ترانسفورماتور اندازه‌گيري‌ ولتاژ،خطاهاي‌ اندازه‌گيري‌ در ولتاژهاي‌ مختلف‌سيستم‌، مقادير مختلفي‌ خواهد داشت‌. اين‌تغييرات‌ با توجه‌ به‌ غير خطي‌ بودن‌ منحني‌مشخصه‌ مغناطيس‌ شوندگي‌ هسته ‌ترانسفورماتور، حاصل‌ مي‌شود. تغييرات‌ خطاهاي‌ اندازه‌گيري‌ نسبت‌ به‌تغييرات‌ ولتاژ سيستم‌ را در حالت‌ بارداري‌ وبي‌ باري‌ نشان‌ مي‌دهد. با توجه‌ به‌ اين‌ شكل‌مي‌توان‌ گفت‌ كه‌ تغييرات‌ خطاهاي‌اندازه‌گيري‌ در محدوده‌ وسيعي‌ از تغييرات‌ولتاژ سيستم‌، تغيير چنداني‌ نمي‌كند.

ابعاد سيم‌ پيچهاي‌ ترانسفورماتور:
در طراحي‌ يك‌ ترانسفورماتور، سطح‌مقطع‌ مس‌ سيم‌ پيچها را با در نظر گرفتن‌كلاس‌ دقت‌ و خطاي‌ مشخص‌ شده‌ به‌ دست‌مي‌آوريم‌. هنگام‌ محاسبه‌ سطح‌ مقطع‌ مس‌سيم‌ پيچها، مواردي‌ را در نظر مي‌گيريم‌ كه‌عبارتند از: ولتاژ نامي‌ سيم‌ پيچ‌ اوليه‌ وثانويه‌ ، تعداد دور هر يك‌ از سيم‌ پيچها، بارنامي‌، كلاس‌ دقت‌، فركانس‌ نامي‌ و ضريب‌ولتاژ نامي‌ ترانسفورماتور.

اساس‌ روش‌ فوق‌ به‌ اين‌ شرح‌ است‌:
1- محاسبه‌ تعداد دور سيم‌ پيچهاي‌ترانسفورماتور: براي‌ محاسبه‌ تعداد دورسيم‌پيچهاي‌ ترانسفورماتور رابطه‌ (10) را درنظر مي‌گيريم‌:
در اين‌ رابطه‌ داريم‌:
تعداد دور سيم‌پيچ‌اوليه‌ يا ثانويه‌=N
ولتاژنامي‌ سيم‌پيچ‌ اوليه‌ يا ثانويه‌=Vn
فركانس‌ نامي‌ ترانسفورماتور=¾
سطح‌ مقطع‌ موثر هسته‌=Aj
چگالي‌ شار مغناطيسي‌ در ولتاژ نامي‌= Bnسيم‌پيچ‌ اوليه‌ و يا ثانويه‌
در حالت‌ كلي‌ مي‌توان‌ گفت‌ كه‌ مقدارBn به‌ ضريب‌ ولتاژ نامي‌ ترانسفورماتوربستگي‌ دارد.
2- محاسبه‌ مقاومت‌ اهمي‌ اتصال‌ كوتاه‌ RK:براي‌ محاسبه‌ مقاومت‌ اهمي‌ اتصال‌ كوتاه‌.
با توجه‌ به‌ كلاس‌ دقت‌ ترانسفورماتور،مقدار درصد افت‌ ولتاژ مقاومتي‌ به‌ دست‌مي‌آيد.
3- سطح‌ مقطع‌ مس‌ سيم‌ پيچهاي‌ اوليه‌ وثانويه‌ ترانسفورماتور را با توجه‌ به‌ مقدارRK، انتخاب‌ مي‌كنيم‌.
4- بعد از محاسبه‌ ابعاد سيم‌ پيچهاي‌ترانسفورماتور، راكتاس‌ معادل‌ سيم‌ پيچها را(XK) به‌ دست‌ مي‌آوريم‌.
5- خطاي‌ نسبت‌ دورها و خطاي‌ زاويه‌اي‌را محاسبه‌ مي‌كنيم‌. اگر مقادير به‌ دست‌ آمده‌بزرگ‌ باشد با توجه‌ به‌ كلاس‌ دقت‌ترانسفورماتور، براي‌ به‌ دست‌ آوردن‌ خطاي‌مشخص‌ شده‌، سطح‌ مقطع‌ مس‌ سيم‌ پيچها را افزايش‌ مي‌دهيم‌.

كلاس‌ دقت‌ و ظرفيت‌ بارترانسفورماتور
در حالت‌ كلي‌، ظرفيت‌ بارترانسفورماتور به‌ امپدانس‌ كوتاه‌ آن‌ بستگي‌دارد. يعني‌ مي‌توان‌ گفت‌ كه‌ اگر امپدانس‌اتصال‌ كوتاه‌ ترانسفورماتور، مقدار كوچكي‌باشد، ظرفيت‌ بار آن‌ مقدار بزرگي‌ خواهد بودو برعكس‌. از طرفي‌ ظرفيت‌ بارترانسفورماتور به‌ كلاس‌ دقت‌ آن‌ نيز بستگي‌دارد. به‌ عنوان‌ مثال‌ اگر ظرفيت‌ بار، 200ولت‌ آمپر با كلاس‌ دقت‌ 1 در نظر گرفته‌ شوددر كلاس‌ دقت‌ 0/5 ظرفيت‌ بار به‌ 100 ولت‌آمپر كاهش‌ خواهد يافت‌. در يك‌ترانسفورماتور، نسبت‌ كلاس‌ دقت‌ به‌ظرفيت‌ بار، هميشه‌ مقدار ثابتي‌ است‌.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:56  توسط 66  | 

جهان امروز كه لازمه رشد دانش‌هاي فني از مدل اعصار قديم كه متكي به افراد بود، خارج شده و توسعه پايدار فناوري در يك كشور مستلزم وجود، بسترهاي علمي و فرهنگي و گسترش دانش‌هاي عمومي، ايجاد فرصت‌هاي صنعتي براي بكارگيري نتايج تحقيقات و ممارست در كسب تجربيات اجرايي و ... است. مديريت‌هاي فناوري بدون برنامه‌ريزي، سازماندهي و فراهم كردن شرايط همه‌سو‌نگر براي رشد مراكز علمي و پژوهشي، ارتباط طبيعي بين نهادهاي مختلف، تربيت و كارآمدي نيروي انساني و ... تحقق نخواهد يافت. لذا در اين نوشته سعي دارد كه ايجاد مديريت منسجم فناوري را به عنوان يك رويكرد ملي، در جهت كارآمدي و همبستگي با ساير صنايع و مراكز علمي كشور، همچنين خودكفايي نسبي مطرح كند.
در پيشگفتار مجموعه سخنرانيهاي اولين كنفرانس مديريت فناوري در سال 82، مديريت فناوري را به معني استفاده از ابزار علمي در برنامه‌ريزي، سازمان‌دهي، هدايت، رهبري و نظارت بر فعاليت‌هاي مربوط به انتخاب، اكتساب، بكارگيري، بهره‌برداري و توسعه فناوري، مي‌داند. بر اين پايه تاكيد بر نقش فناوري در توسعه اقتصاد و صنعت كشور، آشنايي محققان و مديران صنعت‌ كشور با جنبه‌هاي نظري و علمي، همچنين شناخت تجربيات سايرين در توسعه صنعتي و مالاً چگونگي كاربرد مديريت فناوري در صنعت‌برق كشور، بعنوان اهداف برگزاري كنفرانس مذكور تعيين شده است.

اغلب سخنرانان در يازده مقاله آمده در مجموعه فوق، بصورت پراكنده و فشرده برداشت‌هاي نظري خود را از منابع مختلف، بدون اينكه راهكارها و سياست‌هاي كاربردي مشخصي را براي مديريت مورد نظر در ايران دنبال كند، ارايه كردند. اين رويه در ساير سخنرانيها و مقالات مشابه نيز، مشاهده مي‌شود. بطوريكه در پايان يكي از مقاله‌هاي همين مجموعه به نقد گفته شده كه فناوري بيش از هر چيزي نياز به واقع‌بيني و تلاش و توليد دارد. البته براي فناوري بايد سياستگزاري كرد و متولي و مسوول آن را در سطح ملي مشخص كرد و نظام توسعه فناوري را طراحي كرد. اما پديده‌اي كه امروزه رايج است اين است كه بجاي اينكه توليد‌كنندگان فناوري، مشكلات خود را مطرح كنند. هزار و يك متولي مجازي براي فناوري پيدا شده و بجاي پرداختن به توليد فناوري به بحث درباره چگونگي و فلسفه فناوري پرداخته‌ايم.
از آنجا كه ما عموماً و با سرعت به ورطه تفنن وارد مي‌شويم بايد دقت كرد كه همانگونه كه ما 200 سال درباره جبر و اختيار به بحث و مناقشه پرداختيم، در اين مقوله هم بجاي توليد فناوري به بحث‌هاي تكراري و بي‌فايده دچار نشويم.
در آغاز انقلاب صنعتي در اروپا
گوته شاعر آلماني شعر زيبايي سروده است كه در يكي از ابيات آن مي‌گويد، Bildner, bild, rede nicht يعني نقاش، نقاشي‌كن، حرف نزن، شايد اين شعر بتواند اندرز خوبي باشد.
با ملاحظه عبارات فوق در مي‌يابيم كه عليرغم نظرات و گفتارهاي گوناگوني كه در مبحث مديريت فناوري گفته يا نوشته مي‌شود، نيازمند به كنكاش موضوع بگونه كاربردي تر مي‌باشيم.
با اين ديد، گزينه‌هايي از سخنرانيهاي مجموعه مذكور عيناً يا مضمون آنها به صورت فشرده، بشرح زير اشاره مي‌شود:
1- شناخت زمان و زمانه‌اي كه در آن بسر مي‌بريم براي استفاده از فرصت‌هايي كه در اختيار داريم، امري حياتي است.
2- در اختيار داشتن كالا، خدمت و فرآورده مترادف با تسلط بر فن‌آوري نيست.
3- فناوري از مقوله‌هاي راهبردي است لذا داشتن آينده‌نگري، چشم‌انداز و سياست كلي در آن، پايه تصميم‌گيريها است.
4- تقبل هزينه‌هاي توسعه فن‌آوري و حمايت از فن‌آوريهاي مورد نياز تا مرحله تجاري شدن ضرورت دارد.
5- در كشورهاي پيشرو، نظام‌هاي ملي نوآوري مستقر و فرآيندهاي اصلي توسعه فن‌آوري قانونمند و هدفمند شده‌اند و دولتها نقش عمده و كليدي در شكل‌گيري نظامها و تقسيم‌ كار ملي دارند.
6- در بحث زنجيره توليد فناوري، بين فعاليت‌هاي تحقيقات كاربردي، فناوري، توليد و بازار همپوشاني وجود دارد.
7- نظام‌ ملي توسعه فناوري يك ارتباط سازمان يافته بين برنامه‌هاي توسعه و فرآيندهاي اصلي توسعه فناوري، بعنوان موتور محركه توسعه، است.
8- ماموريت نظام ملي توسعه فناوري تحقق برنامه‌هاي توسعه و ماموريت‌هاي وزارت علوم، تحقيقات و فنآوري است.
9- سياست راهبردي فناوري، عبارتست از، تصميمي كه سازمان درارتباط با سرمايه‌گذاري، توسعه وبهره‌برداري از فناوري‌هاي محصول و فرآيند خود اتخاذ مي‌كند.
10- وجود سياست راهبردي فناوري در جهت‌گيري فعاليت‌هاي توسعه فناروي، تخصيص منابع و ديگر فعاليت‌هاي پشتيباني‌كننده موثر است.
11- نظام ملي نوآوري عبارتست از شبكه‌اي از سازمانها، نهادها، موسسات يك كشور كه براي ايجاد، اشاعه و بكارگيري و بهره‌برداري از دانش علمي فناوري فعاليت مي‌كند.
12- شكل دادن به شبكه همكاري‌هاي علمي و فني در سطح كشور وظيفه چند نهاد به خصوص نيست بلكه بايد همه وزارتخانه‌ها و دانشگاهها و مراكز مختلف در اين شبكه نقش داشته باشند.
13- انتقال، جذب و توسعه فناوري يكي از وظايف مهم مراكز تحقيقاتي است.
14- در سطح ملي مهمترين وظيفه سياستگزاران، سازماندهي نظام ملي نوآوري است كه با شكل‌گيري آن ارتباط نهادهاي دولتي، خصوصي و دانشگا‌هي در جهت توليد نوآوري تسهيل شود. در اين ميان متولي نظام شكل‌گرفته بايد متناسب با هر بخش تعيين شود. فرضا در بخش علوم پايه بهتر است دانشگاهيان مسووليت رابر عهده داشته باشند.
15- عمده‌ترين شاخص براي ارزيابي فن‌آوري مربوط به توليدفناوري در هر كشور است.
16- سرمايه‌گذاري در امر توليد فناوري و بكارگيري و يا فروش آن از عمده‌ترين عوامل پيشرفت فناوري در هر كشور محسوب مي‌شود.
17- ورود به عرضه فناوري مستلزم سياستگزاري، سرمايه‌گذاري و افزايش بهره‌وري در همه زمينه‌ها است:
از مجموعه مطالب بالا بر مي‌آيد كه براي ساماندهي به نوآوريها و توسعه فناوري كشور و بتبع آن در صنعت‌برق نياز به اعمال مديريت جدي و هدفمندي مي‌باشيم. لذا نظرات كلي اوليه بشرح زير بيان مي‌شود.
الف: براي اعمال مديريت فناوري در صنعت برق با دو رويكرد روبرو مي‌باشيم. از يك طرف وجود تجربيات اجرايي و شناخت نسبي از نيازمنديها كه مي‌تواند ما را براي رسيدن به مديريت فناوري كمك كند. از طرف ديگر وجود پراكندگي مديريت‌هاي تصميم‌گير درامور جاري با نگرش‌هاي متفاوت كه عامل بازدارنده يا كند‌كننده براي دستيابي به سياست‌هاي راهبردي و ضوابط همه سونگر است.
بيان اين مطلب نفي تلاشها و دستاوردها در مجموعه صنعت‌برق از گذشته تا بحال نيست. بلكه نقد و بررسي با نگاه از بيرون محيط‌هاي اجرايي و از منظر مديريت جامع فناوري و شناخت شرايط حضار براي برقراري تفاهم درجهت حركت به سمت خلق درون زاي فناوريها و افزايش قابليت جذب و توسعه فنون غيربومي فراگير كردن دانش‌هاي فني، مد نظر است. در صورت عدم توجه به لزوم انسجام فعاليت‌هاي فناوري و ضرورت ايجاد نگرش تمركزي به اعمال مديريت فناوري، عليرغم سرمايه‌گذاريهاي مستمر براي گسترش تاسيسات و امكانات جديد، بدليل پراكنده و غيرهمسو بودن نگرش‌هاي احداث، بهره‌برداري و نگهداري تاسيسات، جهش لازم براي پركردن فاصله سطح فناوريهاي كشور با كشورهاي پيشرو در فناوريها بوجود نمي‌آيد و باصطلاح مصرف‌كنتده مدام دستاوردهاي ديگران خواهيم ماند. شاهد اين مدعا هم ارايه بعضي از مقالات و بيان بعضي ديدگاههاي فناوري در سخنرانيها، بصورت‌هاي ترجمه‌اي، تكراري و غير مرتبط باجامعه ما است. حال در صورت پذيرش نكات فوق نيازمند به ايجاد ساختار، گردش كار، ضوابط و مقررات خاص بعنوان سند مرجع مديريت فناوريها در صنعت‌برق وبتبع آن تعيين خط‌مشي‌هاي ضروري براي متوليان سياستگذاري و نهادهاي اجرايي ذيربط، هستيم.
ساختار كلي هرم مديريت مورد نظر بصورت سلسله مراتبي تصميم‌گيري و اجرا مركب از مجمع نمايندگان نهادهاي اصلي رهبري‌كننده و سازمانهاي اجرايي در صنعت‌برق و خارج از آن، بسرپرستي معاونت و مسوولين ذيربط امور برق وزارت نيرو، بشكل زير قابل پيشنهاد خواهد بود:
اسامي نهادهاي مذكور وعضويت نمايندگان آنها و محل دبيرخانه مربوطه به پيشنهاد معاونت فوق و تصويب وزير نيرو تعيين مي‌شود.

اهم اهداف و وظايف مديريت فناوري صنعت‌برق عبارتند از:
- تعيين فناوريهاي مورد نياز و اولويت‌دهي آنها بر اساس برنامه‌ها و چشم‌انداز توسعه كشور
- هماهنگي و سياستگذاري مشترك با مراكز صنعتي، علمي و تحقيقاتي كشور براي تقسيم كار مشترك
- تدوين رويه‌هاي انتقال، جذب، توسعه و تجاري‌سازي فناوريهاي هدفمند
- هماهنگي و برنامه‌ريزي براي تخصيص منابع و سرمايه‌گذاري
- تدوين شاخص‌ها و رويه‌هاي نظارت و ارزيابي عملكردها و ميزان دستيابي به اهداف
- حمايت‌هاي فني و فناوري در بخش‌هاي خصوصي كوچك صنعتي در راستاي رفع نيازمنديهاي صنعت
- حمايت از ايجاد انجمنها، مراكز و تشكل‌هاي تخصصي و هدايت نوآوريها بسمت فناوريهاي هدفمند
- طراحي ارتباط‌هاي شبكه‌اي بين سازمانهاي مسوول و ايجاد نهادهاي زيربنايي براي اشاعه تحقيقات و بكارگيري فناوريهاي ايجاد شده
- برقراري ارتباط متقابل بامراكز آموزشي براي تربيت نيروي انساني متكي بر فنون مورد نياز
- تهيه و تدوين مقررات و قوانين ضروري و اخذ مصوبات لازم
- برنامه‌ريزي و نگرش عملي به نهضت نر‌م‌افزاري و توليد علوم مرتبط با صنعت‌برق و هماهنگي با مراكز دانشگاهي و پژوهشي
ب: واقعيت اين است كه در مباحث طراحي، احداث، نگهداري و تعميرات، ... مربوط به تجهيزات و تاسيسات فني، مبادله اطلاعات و استفاده از تجربيات كاري و خبرگي كارشناسي از عملكردها، توسط افراد از محيط‌هاي مختلف، باعث قوام و همه‌سونگري و رفع نواقص مشخصات و نظامهاي فني خواهد شد. بعبارت ديگر ممكن است در ابتداي برنامه‌ريزي و تصميم اوليه تامين تجهيزات يا احداث تاسيسات جديد، به دلايلي از قبيل ملاحظات اقتصادي زودگذر و ياعدم شناخت مكفي، مشخصات فني يا طراحيهايي از سوي تهيه‌كنندگان اسناد خريد ياطراحان و سازندگان، پيشنهاد و در نظر گرفته شود كه جامع نبوده و با نواقصي همراه باشند، در نتيجه براي ساليان طولاني مسوولين نگهداري و بهره‌برداري كننده را با مشكلات عديده غيرقابل رفع روبرو سازند، كه اگر از ابتدا شرايط لازم براي انتقال تجربيات كارشناسي وجود داشته باشد كاستي‌ها تقليل مي‌يابند.
اگر چه تكامل فناوريها، دانش فني مهندسين دنيا، در طول ساليان و در مسير اجراي طرحهاي مختلف صورت گرفته و باصطلاح براي سطح دانش بشري دريك مقطع زماني، قصوري متوجه اشخاص نيست، اما بايد پذيرفت كه امروزه صنعت برق ايران باواقعيات و تاسيسات عديده‌اي روبرو هستند كه بجهت مستند نبودن تجربيات خبرگان در گذشته و اتكا به محفوظات كارشناسي اشخاص محدود يا كمي تجربه مديران طرحها و شرايط زماني همراه هستند كه تغيير در آنها به دليل بالا بودن هزينه و شرايط فني مربوطه، توجيه‌پذير نبوده و ضعف آنها، گريبانگير شبكه برق شده است.
بنابراين اقتصا مي‌كند درجهت توجه به نهضت نرم‌افزاري و توليد علم كشور، موضوع لزوم انتقال مستمر تجربيات خبرگان داخل كشور به يكديگر و ارتباط كارشناسي با خبرگان ساير كشورها از يك طرف و توسعه علوم مورد نياز دربدنه مرازك پژوهشي و دانشگاهي با نگرش ويژه و عملي به فناوريهاي صنعت‌برق، از طريق انجمن‌هاي تخصصي و علمي از طرف ديگر، مورد تعمق قرار گيرد تا باين ترتيب زمينه‌هاي همفكري ايجاد شده و باعث توسعه دانش جمعي كارشناسان كشور و ارتباط صنعت‌ با محيط‌هاي پژوهشي و دانشگاهي شود.
ج: با عنايت به وجود تحولات مستمر بنيادي جهاني در شاخه‌هاي مختلف صنعت‌برق در سالهاي آتي و لزوم پيش‌بيني‌ها و آمادگي‌ براي كسب، جذب و توسعه فن‌آوريهاي پايه و نوين، نياز است كه مراكز پژوهشي و علمي كشور (وابسته به صنعت‌برق و خارج از آن) وظيفه آينده پژوهشي را سرلوحه اهداف و فعاليت‌هاي دراز مدت خود قرار دهند. در اين رابطه مرز زماني و ملاك كار برنامه كلان آمده در چشم‌انداز صنعتي شدن كشور مي‌تواند قابل تكيه و دستورالعمل باشد.

جمع‌بندي و پيشنهاد:
1- از آنجايي كه دستيابي به دانش‌هاي روز و ايجاد شرايط جهت تجاري شدن آن، محدود به فعاليت‌هاي داخل يك سازمان نبوده و از جهات مختلف پديده‌ايست كه درتعامل مشترك و مستمر با ساير سازمانهاي صنعتي و علمي كشور شكل گرفته و قوام مي‌يابد، پيشنهاد مي شود يك هيات موسس مركب از نمايندگان واحدهاي موثر و ذيربط در فناوري‌ صنعت‌برق تشكيل شده و با توجه به هرم سلسله مراتبي مديريت در داخل صنعت و ضرورت تعاملات با سايرين، ساختار و شبكه ارتباطي اوليه، طراحي و پس از اخذ تاييد از مراجع مربوطه، نسبت به انتخاب اعضاي شوراي مركزي مديريت و فناوري صنعت‌برق اقدام شود.
نكته مهم دراين گونه امور، انتخاب يك واحد ستادي بعنوان دبيرخانه اوليه و ثابت هست كه بتواند پيگيري‌ها را داشته باشد.
به هر صورت بايد سريعاً براي تحقق اهداف و انتظارات از مديريت فناوري صنعت‌برق، سازمان اصلي و نهادهاي جنبي ايجاد شود. درغير اين صورت ادامه وضع موجود صرفاً به مباحثات كلامي خواهد گذشت.
2- با توجه به خلائي كه در انتقال تجربيات خبرگان ذكر شد و در جهت سامان‌دهي به نهضت نرم‌افزاري و توليد دانش صنعت‌برق كشور و شروع يك فعاليت عاجل تا تشكيل ساختارمديريت مورد نظر، يك شاخه كاري بعنوان زير مجموعه آينده مديريت فناوري برق براي برقراري ارتباط بين تشكل‌هاي تخصصي (از قبيل برق، كنترل، ابزار دقيق،‌مكانيك، شيمي، متالورژي، بهره‌برداري، ...) هماهنگي با دانشگاهها، برگزاري نشست‌ها و انتشارات مقالات تخصصي در يكي از سازمانهاي موجود فعال شود.
3- در جهت ملموس‌تر كردن مباحث تخصصي دانش فني و آگاهيهاي علمي، برگزاري كنفرانس و مديريت فناوري از حالت طرح مقالات كلي و پراكنده خارج و نشست‌ها بصورت تخصصي درآمده و در فاصله برگزاري دو كنفرانس نيز جلسات تخصصي انجمن با نگرش بر مديريت فناوري (نه گزارشهاي مرسوم از پروژه‌هاي اجرايي) برگزار شود. براي شكل‌دهي به اين خواسته با اعلام موجوديت انجمنهاي تخصصي توسط يك هيات موسس، عضوگيريها از بين كارشناسان كل كشور و خارج از آن انجام خواهد شد.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:56  توسط 66  | 

 

مطالعه فلش اور در مقره‌هاي سليكوني با آلودگي مصنوعي در تستهاي مه‌نمكي نشان مي‌دهد كه تخليه روي مقره كاملاً آلوده تابع مسير نشتي در طول سطح مقره است. در مقره‌هايي كه بصورت تكه‌تكه آلوده مي‌شوند، تخليه در مسير آلوده تابع مسير نشتي در قسمت آلوده سطح مقره است. وجود قطرات آب و لايه‌هاي آلودگي شدت ميدان الكتريكي را روي سطح مقره‌هاي سيليكوني افزايش مي‌دهد. بنابراين مطالعه توزيع پتانسيل وميدان الكتريكي در مقره‌هاي سيليكوني تحت شرايط مرطوب و آلوده، براي درك عميق شروع مكانيزم فلش اور ناشي از آلودگي بسيار مهم است.
قطرات آب نقشهاي متعددي در فلش اور ناشي از‌ آلودگي و پيري مقره‌هاي سيليكوني ايفا مي‌كند كه عبارتند از:
1- قطرات به علت پرميتيويته و رسانايي بالايشان ميدان الكتريكي را بشدت زياد مي‌كند.
2- تخليه‌هاي كروناي سطحي از قطرات آب، مواد چتركهاي مقره را پير مي‌كند.
3- تخليه كرونا خاصيت آبگريزي در قسمتهايي از سطح را از بين مي‌برد و سبب گسترش قطرات و بهم پيوستن آنها مي‌شود.



1- بدست آوردن مدل:
در اولين قدم، يك مدل نمونه بايدبدست آورد تا مشخصات اصلي توزيع ميدان الكتريكي اطراف قطره آب مطالعه شود. به همين دليل، يك سطح سيليكون رابر مسطح آبگريز با يك قطره آب مجزاي براي مطالعه افزايش ميدان الكتريكي در اطراف قطره آب مورد استفاده قرار گرفته است. براي ساده سازي بيشتر، قطره آب مجزاي منفردي كه نيمكره آن در شكلها آمده است فرض مي‌كنيم.
يك مقره بشقابي عمودي را فرض مي‌كنيم كه قطرات آب ساكن روي چترك و sheath عمورد بر خطوط هم پتانسيل قرار دارند. براي نشان دادن ناحيه sheath و ناحيه چترك مقره، دو الكترود با يك صفحه سيليكون رابر به ابعاد (cm10*cm10*cm10) را فرض مي‌كنيم. هدايت نسبي مواد سيليكوني 3/4 است.
دو الكترود به فاصله 10 سانتي‌متر و صفحه سيليكون دردو موقعيت متفاوت قرار مي‌گيرد. ناحيه sheath بوسيله صفحه سيليكوني كه بين دو الكترود مانند اسپيسر قرار گرفته است شبيه‌سازي مي‌شود و صفحه سيليكوني بصورت موازي، بين دو الكترود، براي شبيه‌سازي ناحيه چترك قرار مي‌گيرد.
در هر دو مورد ولتاژ اعمالي 100 ولت است كه ميانگين شدت ميدان الكتريكي v/cm (10= (10/100)) است. هدايت نسبي آب 80 است.

تجزيه و تحليل افزايش ميدان الكتريكي بوسيله قطرات آب

خطوط هم پتانسيل و خطوط ميدان الكتريكي اطراف قطره آب كه روي صفحه سيليكوني قرار گرفته است، ناحيه sheath و ناحيه چترك را شبيه‌سازي مي‌كند كه به ترتيب در شكلهاي 2 و 3 نشان داده شده است. خطوط پيوسته براي نشان دادن خطوط هم پتانسيل وخط چين‌ها براي مسير ميدان الكتريكي بكار رفته است.
از شكلهاي 2 و 3 چنين به نظر مي‌رسد كه وجود قطره آب سبب انحراف قابل توجهي در ترتيب خطوط هم پتانسيل و مسير ميدان الكتريكي در اطراف قطره اب شده است. براي ناحيه sheath شبيه‌سازي شده، شدت ميدان الكتريكي در خطوط مرزي قطره آب؛ هوا و مواد عايقي بشدت زياد شده است. براي ناحيه چترك شبيه‌سازي شده شكل 3، شدت ميدان الكتريكي در نوك قطره آب زياد شده است.
بردار شدت ميدان الكتريكي هم از نظر كميت و هم از نظر جهت در طول سطح مقره آب تغيير مي‌كند. بدنبال اين تغييرات، كميتهاي متعددي تغيير مي‌كنند كه بعنوان مثال مي‌توان به مولفه‌هاي x و y و z بردار شدت ميدان الكتريكي يا كميت بردار اشاره كرد.
كميت شدت ميدان الكتريكي روي سطح قطره آب در ناحيه sheath و ناحيه چترك، بترتيب در شلكهاي 4 و 5 نشان داده شده است. هر نقطه روي سطح قطره آب بوسيله سه مولفه x و y و z مشخص شده است.
در حقيقت بعد چهارمي نياز است تا توزيع كميت (بزرگي) شدت ميدان الكتريكي را نشان دهد. به عبارت ديگر، بايد بتوانيم توزيع شدت ميدان الكتريكي روي سطح قطره آب را بوسيله دياگرام سه بعدي نشان دهيم. به عبارت ديگر، تمام نقاط روي سطح قطره آب بوسيله تصوير آنها روي صفحه x و y نشان داده مي‌شود. بنابراين بعد z مي تواند براي نشان دادن كميت بردار شدت ميدان الكتريكي درتمام نقاط سطح قطره آب استفاده شود.
واحدهاي x و y به سانتيمتر و شدت ميدان الكتريكي به v/cm است.
براي قطره در ناحيه sheath بيشترين مقدار شدت ميدان الكتريكي روي سطح قطره آب و در سطوح مرزي قطره آب، هوا و مواد عايقي است كه v/cm 29 است شكلهاي 2 و 4 و براي قطره در ناحيه چترك، حداكثر مقدار شدت ميدان الكتريكي در بالاي قطره اب است كه v/cm 6/27 است شكلهاي 3 و 5
اگر هدايت نسبي و رساناي قطره آب با هم مطالعه شوند حداكثر مقدار شدت ميدان الكتريكي ذكر شده در بالا كم است. اگر هدايت نسبي 80 باقي بماند و رسانايي s/cmµ 250 است، حداكثر مقدار شدت ميدان الكتريكي براي قطره آب در ناحيه sheath برابر v/cm 5/35 و در ناحيه چترك v/cm7/31 است كه افزايش ميدان الكتريكي زياد است.

تجزيه و تحليل توزيع پتانسيل تحت شرايط باراني و مه‌اي
مقره‌اي سيليكوني با چهار چترك كه ابعاد آن در شكل 6 آمده است مدل مي‌شود. براي كاهش زمان محاسبات فقط يك قسمت 10 درجه از سطح چترك مدل شده است و ولتاژ اعمالي 100 ولت است. سه مدل زير براي شبيه‌سازي شرايط آب و هوايي خاص مورد استفاده قرار گرفته است.

1- مدل خشك و تمييز:
اين مدل براي مقره‌هاي سيليكوني تمييز و خشك بكار مي‌رود.

2- مدل باراني:
در اين مدل، هفت قطره آب روي هر سطح 10 درجه چترك فرض مي شود كه 256=36*7 قطره روي هر چترك و 1008=4*252 قطره آب روي چهار چترك مقره مي‌افتد. شكل تمام قطرات آب نيمكره با قطره mm2 است. هدايت نسبي قطرات آب 80 و رسانايي آنها µs/cm 250 است. سطح عمودي sheath و زير چتركها خشك است.


3- مدل مه‌اي:
در اين مدل توزيع قطره آب شبيه‌ مدل باراني است، با اين تفاوت كه زير چتركها بوسيله لايه نازك آب پوشانده شده است. هدايت نسبي قطرات آب 80 و رسانايي آنها µs/cm 250 است.
خطوط همپتانسيل در هر سه مورد فوق در شكل 7 نشان داده شده است. شكل (7-الف) توزيع يكنواخت ميدان الكتريكي در طول قره تمييز و خشك را نشان مي‌دهد. (7-ب) نشان مي‌دهد كه فرض كردن شرايط باراني، شدت ميدان الكتريكي را در اطراف نواحي انتهاي چترك به آرامي نسبت به مدل خشك و تمييز كم مي‌كند. وجود قطرات آب روي چتركهاي، توزيع ميدان الكتريكي را روي هم رفته كمي غيريكنواخت‌تر از حالت خشك مي‌كند، (البته شدت ميدان الكتريكي موضعي در اطراف هر مقره آب بيشتر است). نتيجه اينكه، ميدان الكتريكي روي هم رفته، در مناطق محل تقاطع سه گانه (پوشش، هوا و فيتينگها) كمي كوچكتر از حالت خشك و تمييز است. در نهايت شكل (7-ج) نشان مي‌دهد كه فرض كردن مدل شرايط مه‌اي، نواحي خشك در طول sheath مقره، حداكثر مقدار ولتاژ را تحميل مي‌كند. شدت ميدان الكتريكي روي هم رفته در طول نواحي انتهايي مقره بيشتر از حالت خشك تمييز است.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:55  توسط 66  | 

 

افزايش گسترده نياز به فلزات سخت ، با استحكام زياد و مقاوم در مقابل گرما در مهندسي به نيازهاي خاصي در زمينه تكنولوژي و تكنيكهاي ماشين كاري انجاميد. بنابراين بسياري از روشها در فرايندهاي ماشين كاري پيشرفت كرد . ماشين كاري با صوت ،ماشين كاري اشعه الكتروني، ماشين كاري پلاسما وماشين كاري ليزري مثالهايي از اين فرايندهاي ماشين كاري هستند. يكي ديگر از اين فرايندهاي مدرن لايه برداري شيميائي است كه براي مخلوطي از تجمعي از فلزات نرم و آلياژهاي آلومينيوم بوده و براي صنعت هواپيمايي بكار گرفته ميشود.
ماشينهاي تخليه الکتريکي (EDM) بصورت فرايندهاي پرداخت فلزات رسانا ، توسط جرقه هاي الکتريکي مشخص مي شوند. در ابتدا براي از بين بردن براده هاي مته کاري، و همچنين سوراخ کردن ابزارهاي ظريف و گرانبها بکار گرفته شد. امروزه EDM براي ساخت حفره ها و قالبهاي هندسي و غير هندسي بسيار پيچيده بکار مي رود. مفهوم ماشين كاري الكتريكي ممكن است به يك گروهي از فرايندها كه جريان الكتريكي را براي برداشتن فلزات بكار ميگيرند اطلاق شود.



در فرايند ماشين كاري الكتريكي بر خلاف ماشين كاري  مكانيكي فلز ابزار مي تواند از فلز قطعه كار نرمتر باشد و براده برداري نيز هيچ ارتباطي به سختي مكانيكي قطعه كار ندارد.  هر چند که فلزات سخت کمي سخت تر از فلزات نرم براده برداري مي شوند.

فرايندهاي ماشين كاري الكتريكي به دو دسته تقسيم مي شوند. اولين آنها ماشينهاي تخليه الكتريكي هستند. در اينجا اثر خوردگي از يك توالي سريع از پالسهاي الكتريكي در از بين بردن فلز از روي قطعه كار بكار گرفته ميشود. فرايند دوم ، فرايندهاي الكتروشيميايي و فرسايش با الكتروليت هستند. فرايند ماشين كاري تخليه الكتريكي يا بعبارت ديگر ماشين كاري اسپارک بر روي اثر خوردگي جرقه الكتريكي بر روي هر دو الكترود پايه گذاري شده است.

 ياد داشتن اين نكته كه  اگر هر دوي قطعه كار و الكترود هم از يك جنس باشند، بيشترين سائيدگي در قطعه أي بوجود مي آيد كه روي الكترود منفی بسته شده باشد ، الزامي است. بنابراين براي بدست آوردن خوردگي ماكزيمم از قطعه كار ، در حاليكه الكترودمان سايش بسيار كمي داشته باشد، بايد قطعه كار را به پايه منفی و الكترود يا ابزار را به پايه مثبت وصل كنيم.

فرايند براده برداري توسط جرقه
قطعه كار در حمامي از دي الكتريك غرق ميشود. و اين دي الكتريك پنج سانتيمتر بالاتر از سطح قطعه كار را مي پوشاند ، اينكار از آتش گرفتن  دي الكتريك در اثر جرقه ها جلوگيري ميكند.

الكترود و قطعه كار به دو سر يک منبع ولتاژ DC با ولتاژي بالاتر از 50 ، 60 ولت وصل شده اند. دي الكتريك در چرخه اي توسط پمپ مي چرخد . فاصله هوايي براي جرقه زني در حدود 25 تا 100 ميكرومتر توسط سروموتور ثابت نگه داشته ميشود. زمانيكه منبع تغذيه روشن شد ، پس از انتخاب مقادير جريانها ، ولتاژها ،فاصله مجاز gap[1] ،زمانهاي [2]ontime ، off time[3] ، زمانهاي شستشو و … با استفاده از وروديهاي مختلف (مكانيكي با سلکتورها يا بصورت عددي و با استفاده از يك سيستم ميكروپروسسوري )، ولتاژ به دو سر الكترود  اعمال ميشود ، با اعمال ولتاژ در فاصله معيني از gap جرقه توليد ميشود ،سيال يونيزه شده و تخليه الكتريكي صورت ميگيرد ، بعلت حركت  سيال زير محل فعال ، سيال غير يونيزه اي خواهيم داشت بنابراين باز سيال جداساز خوبي خواهد بود و سيكل ادامه مي يابد …

سيال انتخاب شده بايد تا زمان وقوع شكست الكتريكي بعدي ، نارسانا باقي بماند . زمانيكه به ولتاژ دلخواه  رسيديم سيال بايد سريع بشكند (شكست الكتريكي ) و پس از عمل تخليه در زمان خاموشي پالس ( off time ) باز سريع غير يونيزه شده به حالت اول برگردد.

در اين روش توالي تندي از جرقه ها بدست مي آيد ( بين 500 تا 50000 جرقه در ثانيه) ، هر جرقه أي ، دماي محلّي نقطه جرقه ديده را به حرارت بسيار بالائي در حدود7000 تا  C ْ 12000 مي رساند اين جرقه حرارت بالا باعث ذوب اين نقطه از مكان جرقه ديده شده و ناحيه مذاب بسيار كوچكي را روي سطح قطعه كار بوجود مي آورد، در زمان Offtime دی الکتريک سرد به روی اين نقطه با حرارت بسار بالا می رسد و اختلاف دمای چند هزار درجه ای موجب انفجار نقطه ذوب شده می شود ، بديهي است که اغلب جرقه بين نقاطي از قطعه كار و الكترود كه به هم نزديک هستند اتفاق مي افتد و نقطه هاي داغي از قطعه كار خورده شده و از سطح قطعه كار كنده ميشوند اين خوردگيها توسط دي الكتريك از محل دور ميشوند . همچنين كه قطعه کار خورده ميشود الكترود توسط موتور سِروُيِ كنترل شده اي نزديك ميشود.كنترل موتور سِروُ براي فاصله هوائي مناسب وقابل تنظيم توسط نمونه برداري ازولتاژ بين قطعه كار و الكترود انجام خواهد گرفت.

فرايند تخليه پالسي :
الکترود به قطعه کار بسيار نزديک می شود و فرايند کامل يک تخليه الکتريکي به ترتيب زير به وقوع می پيوندد. Offtime

پديده تخليه الکتريکی از زمان اعمال پالس تا شروع جرقه

1.     ولتاژ بين الکترود و قطعه کار يک ميدان الکتريکی در فاصله هوائی يا GAP بوجود می آورد.

2.     در نتيجه اين ميدان ،ذرات هادی در وسط ناحيه ميدان که ميدان الکتريکی بسيار قوی است، متمرکز می شوند. و پلی را در وسط ميدان تشکيل ميدهند. ( بدليل نبود ذرات هادی معلق در آب مقطر خالص در ابتدای بکارگيری ماشين وايرکات براده برداری به کندی صورت ميگيرد چون کانال دير يونيزه ميشود.)

3.     در اين زمان الکترونها از قطب منفی به داخل کانال ايجاد شده حرکت می کنند، و با اِين ذرات برخورد می کنند. بنابراين يونهای مثبت و منفی از اين ذرات معلق بوجود می آيند. اين فرايند بصورت انفجاری کل ناحيه GAP  را در بر می گيرد.


پديده تخليه الکتريکی از شروع جرقه تا انتهای پالس

1.     يونهای مثبت به سمت قطب منفی حرکت ميکنند ، و يونهای منفی بسمت قطب مثبت. و جريان يونها بوجود می آيد.

2.     اين جريان الکتريکي به شدت افزايش يافته و در برخورد در آن نقطه گرماي شديدي بوجود مي آورد و در صورتيکه گرما موثر باشد، همان نقطه از قطعه کار ذوب مي شود. اين گرما مايع دي الکتريک را بخار کرده و فشاري را بين الکترود و قطعه کار بوجود مي آورد اين فشار بسيار کوچکتر از آني است که بتواند در قطعه کار يا ابزار حرکت ايجاد کند اما اين فشار در واحد سطح مقدار بسيار بزرگي است.

3.     پس از ذوب شدن آن نقطه، با ادامه اعمال ولتاژ و جريان، کانال يونيزه گشادتر مي شود و سطح نقطه ذوب بيشتر مي شود اما اين ولتاژ و جريان را تا آخر نمي توان ادامه داد چرا که با ادامه جريان، آن نقطه هر چه بيشتر داغتر مي شود و به کربنها فرصت کافي براي سوختن مي رسد و اين کربنها در اثر فشار حاصل و بدليل مرطوب بودن کانال يونيزه به هم مي چسبند و حال الکترونها به جاي حرکت از طريق کانال يونيزه از طريق اين توده کربن منتقل مي شوند و علاوه بر اينکه بر ذوب بيشتر کمک نمي کند بلکه عارضه بسيار بدي بنام ARC يا جوشکاري را پديد مي آورد.

 
پديده تخليه الکتريکی از در زمانofftime

1.     حال پالس خاموش مي شود.( off time) مايع سرد به سطح مذاب حرارت بالا مي رسد و مذاب بسيار سرد مي شود.


 اين سرد شدن شديد باعث انجماد نشده و مذاب را متلاشي مي کند که بصورت آتشفشاني فوران مي کند و از محل دور مي شود. اما همه مذاب متلاشي نمي شود و قسمتي از آن در اثر فشار گازهاي حاصل جابجا شده و لبه مي گيرد. اين لبه هاي بوجود آمده، نقاط موثر تخليه بعدي خواهند بود. در زمان خاموشي پالس، GAP دوباره ايزوله مي شود و براي پالس بعدي آماده مي شود.

دی الکتريک

در ابتدای کشف اسپارک در روسيه از هوا بعنوان دی الکتريک استفاده شد. بزودی کشف شد که مشتقات نفت مزايای زيادی نسبت به هوا دارند. استحکام آنها زياد است. و با استفاده از مشتقات نفت از گپ کوچکتری ميتوان استفاده کرد و کيفيت اسپارک کاری با آن بسيار مطلوب است. در اين نوع مواد فرکانس کار اسپارک ميتواند بيشتر گردد و ذرات برداشته شده براحتی توسط آن جابجا ميشوند.

وظايف دی الکتريک

·        جداسازی يکی از مهمترين فوائد دی الکتريک عايق سازی بين الکترود و قطعه کار است. دی الکتريک باعث باريک شدن پهنای کانال جرقه نيز ميشود که اين به نوبه خود باعث بالا رفتن کيفيت سطح اسپارک ميشود.

·        يونيزاسيون سيال انتخاب شده بايد تازمان وقوع شکست الکتريکي غير رسانا باقي بماند. زمانيکه ولتاژ فاصله هوائي به ولتاژ يونيزاسيون رسيد ، سيال بايد سريع بشکند ( شکست الکتريکي ) و پس از عمل تخليه باز سريع غير يونيزه گردد. گرماي نهان تبخير سيال بايد بزرگ باشد تا تنها يک قسمت کوچکي از دي الکتريک تبخير شود و کانال اسپارک سطح کوچکي را به خود اختصاص مي دهد. در نتيجه آن چگالی انرژی بالا ميرود و دانه بندي اسپارک ريزتر گردد.

·        خنک سازی دمای جرقه اسپارک در سطح الکترود و قطعه کار مقداری بين 8,000-12,000° C دارد اين گرمای بالا قطعه کار را سريع ذوب ميکند که دی الکتريک بايد هر دو سطح را خنک سازد. اگر الکترود خنک نگه داشته شود خوردگی آن نِيز کاهش مِی يابد.

·        جابجائی ذرات براده برداری شده

شرايط لازم دی الکتريک

بطور تئوريک همه مايعاتی که عايق باشند ميتوانند بعنوان دی الکتريک مورد استفاده قرار گيرند. يک دی الکتريک بايد شرايط زير را داشته باشد.

·        فرسايش: فرسايش زياد قطعه کار داشته باشد در حاليکه فرسايش الکترود توسط يونهای آن کم باشد. ( يونهای مثبت آن بسيار سنگين تر از يونهای منفی آن باشد)

·        تاثير بر سلامتی: تحريک پوستی نداشته باشد، سمی نباشد، دود توليد نکند و بوی بد نداشته باشد. هيدروکربنهای گروه پارافين بر پوست تاثير دارند و نبايد بکار برده شوند.  بر روی وان اسپارک يک سيستم تهويه بايد نصب شود مگر در مواردی که اسپارک فقط برای پرداخت بکار ميرود. 

·        نقطه اشتعال: دی الکتريک نبايد زود بخار شده و مشتعل شود. مايعات با درجه اشتعال پائين تر، گازهاي زيادي را توليد مي کنند که اين گازها سرعت ماشين کاري را پائين آورده و احتمال آتش گرفتگي را بالا مي برد.

·        چگالی: مواد با چگالی بالا نرخ براده برداری بالائی دارند. چگالی مواد معمولا در دمای 15 درجه سانتيگراد محاسبه می شوند. دی الکتريکهای مورد استفاده امروزی چگالی بين 0.750-0.820 دارند.

·        چسبندگی يا ويسکوزيته: ويسکوزيته، فاکتور بسيار مهمي است. روغن با ويسکوزيته بسيار بالا براي ماشين کاري خوب است. و براي اين نوع روغن چرخش مابين فاصله هوائي کوچک به سختي صورت مي گيرد. برعکس ، اين روغن سنگين براي سطوح خشن مناسب است .

·        هدايت الکتريکی: هيدروکربنهائی که برای مصارف صنعتی بکار گرفته ميشوند هدايتی در حدود 2x 10-14 ohmxcm-1 دارند.

·        ضريب دی الکتريک:برای محاسبه ضريب دی الکتريک ظرفيت يک خازن در دو حالت پر از دی الکتريک و خالی از دی الکتريک در يک حالت فرکانس بالا اندازه گيری می شود. ضريب دی الکتريک از تقسيم دو مقدار بدست آمده بدست می آيد. دی الکتريکی برای اسپارک مناسب است که ضريب دی الکتريکی بين دو تا دونيم داشته باشد.

·        ولتاژ از هم گسيختگی: مقدار ولتاژی که ميتواند يک لايه 5/2 (دو نيم) ميليمتری از دی الکتريک را بين دو الکترود کروی از هم بپاشد (عايق را به هادی تبديل کند) ولتاژ از هم گسيختگی يا طاقت جرقه گويند. دی الکتريک مناسب برای اسپارک بايد طاقت جرقه ای بين 50-60 kv داشته باشد.

·        تعليق ذرات:ذراتي که از قطعه کار يا الکترود برداشته ميشوند بخصوص کربن در آن ناحيه ايجاد ناخالصی ميکند. دی الکتريک بايد اين قطعات را از روی ناحيه کار دور کند. بهتر است مقدار کمی از اين ناخالصی ها برای براده برداری بهتر روی ناحيه کار باقی بمانند اما غلظت ناخالصی ها نبايد بالا باشد. افزايش غلظت ناخالصی ها موجب بروز arc ميشود. بعبارت ديگر ذرات ميِکرونی موجب سرعت براده برداری ميشوند و اضافه کردن مقداری ناخالصی به دی الکتريک خالص سرعت براده برداری آنرا بالا ميبرد.

·        رنگ و واشرهای ماشين را حل نکند.

·        عمر بالا , در دسترس بودن و در نهايت قيمت ديگر پارامترهای مهم اسپارک هستند.

در انتخاب روغن مناسب بعنوان دي الکتريک نکات زير بايد مورد توجه قرار گيرند:

1.     براي ماشينکاري کاربيدتنگستن استفاده از نفت سفيد مناسبتر است.

2.     براي ماشين کاري قطعات ريز با سطوح صاف ( مثل صنعت ساعت سازي ) نيز از نفت سفيد استفاده شود.

3.     براي ماشين کاري قطعات با اندازه هاي متوسط ( که h35  يا آنهائي که صافي سطح خوبي را لازم دارند ) از روغن با ويسکوزيته بين 6-12cts استفاده شود.

4.     براي ماشينکاري قطعات بزرگ ( با سطوح خشن  يا ch36 ) از روغن با ويسکوزيته بين 12 تا 20cts استفاده گردد.

 روغن مخصوص EDM

اين نوع از روغن ويسکوزيته پائين بوده و رنگ روشن دارد و همچنين براحتي فيلتر شده و براحتي جابجا مي شود. نقطه اشتغال بالائي نيز دارد از جمله خواص ديگر اين ماده ضد اکسيد اسيون بودن آنست که رسوب را کاهش مي دهد.کميابي و گران قيمت بودن و غير استاندارد بودن انواعي از آن از جمله مشکلات اين روغن يا دي الکتريک مخصوص است.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:55  توسط 66  | 

 

چكيده: تجديد نظر در بازار ذخيره الكتريكي و رشد گسترده آگاهي، اجياد بازار جديد جالب براي راه حل‌هاي مقدماتي انتقال قدرت در تكنولوژي كابل‌ها قالب‌ريزي شده‌است. در همين اثناء پيشرفت در همه زمينه‌ها، توسعه استفاده از ( XLPE ) (رد شدن از پلي اتيلن وصل شده)، سيستم‌هيا عايقي كابل‌ها را تا مرز 500 kv را فراهم كرده است. كاربرد سيستم كابل‌هاي امروزي اغلب نسبت به خطوط هوايي مناسب‌تر است. در حالي‌كه روش‌هاي صنعتي جديد قادر هستند كابل‌هاي زيردريايي ها را با فيبر‌هاي نوري هماهنگ كرده و مفصل انعطاف‌پذيري با طول‌هاي بيشتر از قبل ارائه بدهند.پيشرفت بيشتر سيستم هاي عايقي فشار قوي موقعيت خلاقانه ABB را در مورد ولتاژهاي بالاي DC ارائه مي‌دهد.

سيستم كابل‌هاي با ولتاژ 220 kv  و بالاتر قسمتي ازتوان بالاي زير بناي ترانسفورماتورهاي قدرت مدرن روز هستند. اين همه حاوي اين است،‌ اگر چه يك وظيفه مهم تأمين كننده اين است، به سيستم هاي نمايشي با قابليت اطمينان بالا به خاطر فشارهاي الكتريكي بالا در چنين سطح ولتاژي كه كابل و لوازم جانبي كلاً هماهنگ شده‌اند، اطمينان كامل را بدهد.



رفع محدوديت – تغيير قانون‌ها

سيستم كابل‌هاي فشار قوي يك قسمت اساسي دارد كه در محيطي مناسب، جديد، ويژه قرار مي‌گيرد؛ هنگاميكه مي‌آيد و جايگزين خطوط هوايي مي‌شود؛ با كابل‌هاي زير زميني. هزينه سيستم كابل‌هاي فشار قوي در طول دهه اخير كاهش يافته و احتمالاً بيشتر هم پايين مي‌آيد. در همين زمان عملكرد كابل XLPE شديداً افزايش پيدا كرده است. پيام جديد وجود دارد كه سيستم كابل‌هاي XLPE قادر است با خطوط هوايي، به طور تكنيكي، محيطي و به صورت اقتصادي رقابت كند. اين يك اصل ويژه است در رنج ولتاژ 12 الي 170 كيلو ولت.

اين ويژگي كابل‌هاي XLPE را از طرح انتقال خطوط هوايي در يك منظر جديد متمايز كرده‌است. در جاهايي كه پاسخ كابل‌ها اغلب چايگزين گيرايي داشته باشد.

 *عايق فشار قوي – عملكرد و پيشرفت

روند برقرار شده خوب به سمت يك عايق ضخيم كوچكتر ادامه خواهد داشت نتايج يك كابل باريك‌تر با امتيازات بيشتر، طول خطي طولاني‌تر در اطراف آن، نصب راحت‌تر، مفصل كوچكتر، انقباض و انبساط حرارتي، كاهش مواد عايقي به كاررفته. تجارب اموخته شده در طو ل توسعه كابل‌EHV_XLPE (extra high voltage XLPE)، توسعه يافتن مواد و فرايندها و خدمات فوق‌العاده XLPE، توانسته است ضخامت اين كابل‌ها را تا 12-15 ميليمتر براي خطوط 132 kv كاهش دهد.


مقايسه كابل‌هي هوايي و كابل‌هاي XLPE زير زميني از نظر نرخ هزينه بين سال‌هاي1986 تا 2000

 

*كابل‌هاي زيرزميني با خطوط هوايي متمايزند

البته، امنيت، زيست محيطي، قابليت اطمينان وپارامترهاي اقتصادي عملياتي سيستم‌كابل‌هاي XLPE را از خطوط هوايي متمايز مي‌سازد. براي سيستم كابل XLPE مدرن، نسبت هزينه كاهش يافته و فوايد زيست‌محيطي و قابليت اطمينان اغلب از مسايل روشن و مهم هستند. به خاطر گذشتن بزرگشان  از مناطق تكه‌تكه، كابل‌ها معمولاً كمتر نشان داده مي‌شوند. در مقايسه با خطوط هوايي MVA تلفات را از دست مي‌دهند. چكيده‌اي از فوايد سيستم كابل XLPE در جدول زير داده شده است.

 

ميزان خطوط هوايي بعضي اوقات محدو مي‌شود به وسيله زمستاني بالا كه شامل تعدادي زيادي وسايل گرمايي الكتريكي است. ددر طول روزهاي گرم تابستان خطوط هوايي 50% الكتريسيته كمتري نسبت به زمستان حمل مي‌كنند. اين گيرايي كمتر مجبور است در آينده حل شود. در مناطقي كه محدوديت‌هاي هوايي وجود داردبراي مثال فوايد كابل‌XLPE زير زميني آن‌ها را يك جذب كننده خالص مي‌سازد.خطوط زيرزميني انتقال تقريباً ظرفيت بالا وبهتري براي دوره‌هاي زماني كوتاه‌تر از 90دقيقه را  به خاطر مقدار زياد حرارت بالاي اطراف خاك دارد.

*قابليت سيستم كابل 400-500 kv

IEC تاكيد مي‌كند كه قابليت اطمينان و هماهنگي مهم كابل‌ها و لوازم جانبي با توصيف عملكرد كلي سيستم، مقاومت كابل، اتصالات و ترمينال‌ها ثابت شده است. برنامه آزمون فراگيري شامل يك جفت آزمون صلاحيت در جزئيات IEC 62067 توضيح داده شده است.

ABB به عنوان تأمين كننده سيستم كابل‌هاي 400 kv   در سال 1995 واجد شرايط شده است.

 

*كيفيت مواد و توليد

تنها تأمين كننده‌هاي تأئيد شده رسانيدن(تحويل داده) مواد لازم را بنا نهاده‌اند. همه توليدات ABB براي كابل‌هاي فشارقوي و لوازم جانبي توسط ISO 9001 و ISO 14001 تأئيد شده است.

هسته كابل‌هاي XLPE از يك مواد صنعتي خشك توليد شده‌است. سيستم عايقي كابل شامل لايه هدايت كننده در يك پروسه فشرده شده‌است. و براي عايق‌ها و مواد هدايت‌كننده در يك محل تميز در  سه مرحله فشرده شده‌است.

 

*طراحي كابل

كابل مسي هدايت كننده كه يك منطقه 2500ميلي‌متر مربع دارد كه به پنج جزء براي كاهش اثر پوستي تقسيم بندي شده‌است. ABB از هادي‌هاي برش زده استفاده مي‌كند. كه ساخته‌ شده‌اند از عايق‌هاي مفتولي براي عبور با هم از 1000ميليمتر مربع پوشش براق متشكل از سيم‌هاي مسي درون يك بستر كاغذي كشي براي كاهش تأثير مكانيكي و حرارتي انتقال داده شده عايق. تعداد سيم‌ها و مجموع عبوري به نايز مداري شبكه بستگي دارد. سفتي در طول سيم با هواي مياني درون پوسته سيم با پوردهاي فشرده به پايان مي رسد.

محافظ خارجي در مقابل تأثير مكانيكي و پوسيدگي بوسيله يك پوشش محكم، فشرده و محدود ساخته شده است از HDPE(پلي اتيلن با دانسيته بالا). يك رشته فلزي درون قسمت داخلي غلاف به صورت افشان درون كابل نگه داشته‌شده‌است.

نتايج وزن پايين و لاغر كابل چندين استفاده دارد: طول بزرگتري از كابل مي‌تواند روي قرقره‌ها پيچيده شود، از جريان‌هاي گردابي بالا كه درون غلاف كابل افت مي‌كنند جلوگيري مي‌شودو همچنين ظرفيت جريان عبوري بهينه سازي مي‌شود.

 

*امكان قدرت هوايي

-         يك لايه هدايت كننده فشرده براي اندازه‌گيري غلاف خارجي

-         يك لايه عقبي سرخ رنگ فشرده براي سلامتي فوق‌العاده در اتفاقات محيطي

امكان ديگر كابل‌هاي طراحي شده پيشنهاد دارد كه حل كند درجه حرارت كنترل شده را با كابل‌هاي نوري. فيبرها محصور هستند درون يك تيوپ استيلف تقريباً با همان سايز به عنوان سيم پوششي كه منسجم شده درون پوشش كابل. درجه حرارت كنترل شده در اين روش امكان بهينه سازي بارها را فراهم مي‌سازد.

 

*قسمت سيستم كابل‌هاي 220-500 kv

در كابل‌هاي ولتاژ متوسط معمول است كه در مورد دور يقطعات فكر كنيم. حتي اگر اين تأمين كننده‌هاي متفاوت بيايند، آن‌ها مي‌توانند به يكديگر ملحق شوند. و به عنوان يك سيستم كامل كار خواهند كرد. و اين علت محدوديت دادن براي خيابان‌هاي الكتريكي در ساختمان تجهيزات در       IEC 60502  است.

كابل‌هاي HV و همچنين EHV و لوازم فرعي به عنوان سيستم طراحي مي‌شوند. نه وجود ساختمان تجهيزات كابل‌ها و نه سطح ولتاژ ، فقط تست تجهيزات در IEC 60840 وIEC 62067 .

 

 

 

*طراحي كابل 400 kv XLPE

در سال 1996 ،ABB يك سفارش از خدمات عمومي براي تامين و نصب يك سيستم كابلXLPE 400 كيلو ولتي رد يك تونل زيرزميني طولاني به طول 6.3 كيلومتر در مركز برلين دريافت كرد.

تونل مطرح شده در 25 تا 35 متري زمين واقع شده‌است و يك قطر سه متري دارد.

سيستم كابل با هادي‌هاي مسي قطعه‌قطعه شده 1600 ميليمتر مربعي و يك خازن انتقالي 1100MVA دارد؛ و بخشي از يك خط انتقال ضربدري ميان شبكه فشارقوي شرق و غرب شكل گرفته است. كابل به صورت سه فاز منسجم به صورت قائم نصب شده است. يكي بالاي ديگري با طراحي خاص . 7.2 متر دور از هم و با يك مدار كوچك در وسط هر فاصله مسير كابل تقسيم شده به 9 قسمت كه تقريباً 730 متر طولاني‌تر است. انتهاي GIS روي دو پست فرعي و اتصال ABB جديد نصب شده و براي اتصال كابل‌هاي طولاني مورد استفاده قرار گرفته است. كابل نصب شده تشكيل شده از سه قطعه اصلي با سه قطعه كوچكتر ميان هر قطعه اصلي. مدار كابل در دساكبر سال 1998 به درون خدمات عمومي رفت.

*پروژه‌هاي كابل‌هاي زير آبي جديد

در سال 1998 پروژه كانال جزاير الكترونيكي را تحويل داد كه توان توليد از فرانسه به جرسي را تقويت مي‌كند كه براي اولين بار جرسي را به شبكه مياني اروپا متصل كرد. بخش زيردريايي اين پروژه در ژول 2000 تكميل شد.

اجزاء اصللي تحويل داده شده براي اين پروژه عبارتند از:

-         كابل‌هاي زيردريايي ميان فرانسه و جرسي و ميان جرسي و گيونرسي(تقريباً به طول 70 كيلومتر)

-         پست‌هاي فرعي GIS

-         ترانسفورماتورهاي جديد و راكتورها

دوتا از كابل‌هاي زير آبي از همان شيوه طراحي شده‌اند. به عبارت ديگر سه هسته جدا شده از پوشش با عايق XLPE مي‌باشد ك ههر كدام يك فيبر نوري با 24 فيبر مجتمع در آن براي ارتباط سيستم و قطع داخلي را شامل مي‌شود. كالب‌ها سيم‌هاي لاكي دوبل دارند.( به عبارت ديگر يك لايه داخلي از لاك كش نشان و يك لايه خارجي كه لاك سنگي ناميده مي‌شود)براي حفاظت آزاد از آسيب‌هايي كه مي‌تواند سبب جريان جزر و مدي شود.

كابل يك قطر تقريباً 250 ميليمتري و وزني در حدود 58 كيلوگرم بر متر را در هوا دارد. همچنين هر دو كابل‌ها بوسيله كارخانه در طول كاملشان تحويل داده مي‌شوند.

سيستم‌هاي كنترلي جدا از هم در عمليات كامپيوتري اتصال كابل‌ها نصب شده‌اند. كه در سال 2003 كامل شده‌است.

*برق فشار قوي DC  (HVDC)

برق DC فشار قوي كه از سال 1997 به جريان انداخته شد. نوآوري ديگر ABB در زير زمين است. كه تكنولوژي كابل‌هاي فشار قوي پيشرفته را متحد كرد. كابل‌ها جريان مستقيم فشار قوي را براي انتقال قدرت حجيم د رفواصل طولاني و عنمدتاً زير آب بكار برده مي‌شوند.

تكنولوژي كابل‌هاي قديمي بر پايه سيستم عايقي كاغذ آغشته به روغن چسپنده سبك بنا نهاده شده است. چرا كه اين كابل‌ها فوايد تكنيكي زيادي دارند. ساخت پروسه آهسته و توليد آخر از نظر مكانيكي حساس است.  صنعت نيز زمان زيادي خود به دنبال يك كابل HVDC فشاري از نوع مورد استفاده در سيستم AC مي‌باشد.

با برق HVDC شركت ABB سيستم كابل فشار قوي همراه با ترانزيستورهاي جديد، مبدل‌ها را وارد بازار مي‌كند، كه با ساخت كابلHVDC ميزان انتقال قدرت راحتتر مي‌شود.

*كاربردهاي برق  HVDC

-         تغذيه كننده‌هاي ايزوله شده

-         شبكه‌هاي اتصال AC

-         انتقال قدرت از واحد ژنراتور كوچك

-         ايجاد شبكه DC با اتصال نقطه ضربدري

-         قابليت اطمينان شبكه توسط ولتاژ پايدار و شروع‌هاي سياه

*تأسيسات زيربنايي الكتريكي آينده

سيستم كابل‌هاي فشار قوي به عنوان پاسخ كلي از گهواره تا گور با تحويل تهيه كننده در دسترس هستند. چنين سيستم‌هايي يك هديه قديمي به خوبي يك حس تكنيكي در تجارت هستند. آن‌ها ممكن است با در‌خواست نامه شروع شوند با از ميان برداشتن خطوط اضافه بار ادامه پيدا كنند. و تأمين و نصب كابل‌هاي سيستم و در آخر كنترل دوستانه محيطي با تجهيزات قديمي را داشته باشند.

تمام درخواست‌هاي كابل تقريباض مي‌تواند به عنوان تركيب هوشمند وسايل مانيتوري، مبدل وسايل اشتراك بار، خدمات و يا حتي كنار گذاري وسايل نيز باشد.

نهنگ‌هاي اقيانوس اطلس نيز مي‌توانند آرايش ببينند. و در اينجا نوع جديدي از ضمانت‌نامه‌هاي در دسترس مي‌تواند چندين ترديد تجاري را رفع كند.

 

در رفع محدوديت بازار الكتريكي امروزه قوانيني كه مورد استفاده قرار گرفته‌اندتا حكومت كنند بر امور توليد انتقال و توزيع و همچنين بر خدمات عمومي و تأمين كننده، تغيير كرده است. بدين‌گونه است كه ناگهان يك فروشنده با تغيير اين قوانين به يك نقطه روشن تبديل مي‌شود. بنابراين بازار مجبور است بيشتر به عقايد عمومي گوش بدهد. و يك احتمال قوي نيز وجود دارد كه فرياد براي ديد و بنياد كمتر است.

همه فعالان در اين بازار جديد مجبورند هزينه‌هايشان را كاهش بدهند. و در اين زمان براي ترانسفورماتورها و سيستم‌هاي توزيعي تعهد قابليت اطمينان بالا مي‌دهند. يك طرح خوب وجود دارد كه كابل‌هاي ارتباطي ساخته خواهند شد و مورد بهره‌برداري قرار مي‌گيرند. بطور كامل در سفارش است كه ماكزيمم تكنيك و سود اقتصادي را از شبكه‌هاي الكتريكي بدست‌آورند.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:54  توسط 66  | 

 

طراحی مدار و نحوه راه اندازی الکتروموتورهای سه فاز صنعتی

( اصول مدارهای کنترل )

در ادامه مطلب



مدار فرمان راه اندازی یک الکتروموتور سه فاز ستاره به صورت کنترل از یک نقطه

مدار قدرت راه اندازی یک الکتروموتور سه فاز ستاره به صورت کنترل از یک نقطه

  

مدار فرمان راه اندازی یک الکتروموتور سه فاز ستاره به صورت کنترل از دو نقطه

مدار قدرت راه اندازی یک الکتروموتور سه فاز ستاره به صورت کنترل از دو نقطه 

  

مدار فرمان راه اندازی یک الکتروموتور سه فاز ستاره به صورت لحظه ای و دائم کنترل از یک نقطه

مدار قدرت راه اندازی یک الکتروموتور سه فاز ستاره به صورت لحظه ای و دائم کنترل از یک نقطه

  

مدار فرمان راه اندازی یک الکتروموتور سه فاز ستاره به صورت اتوماتیک

مدار قدرت راه اندازی یک الکتروموتور سه فاز ستاره به صورت اتوماتیک

  

مدار فرمان راه اندازی دو الکتروموتور سه فاز به صورت یکی پس از دیگری (اولویت با موتور اول)

مدار قدرت راه اندازی دو الکتروموتور سه فاز به صورت یکی پس از دیگری (اولویت با موتور اول)

 

مدار فـرمان راه انـدازی دو الکترومـوتـور سه فاز به صورت یکی پس از دیگری (اتوماتیک)

مدار قـدرت راه انـدازی دو الکترومـوتـور سه فاز به صورت یکی پس از دیگری (اتوماتیک)

  

مدار فرمان راه اندازی دو الکتروموتور سه فاز بدین صورت که الکتروموتورها یکی پس از دیگری وارد مدار شده و همزمان از مدار خارج شوند (اتوماتیک)

مدار قدرت راه اندازی دو الکتروموتور سه فاز بدین صورت که الکتروموتورها یکی پس از دیگری وارد مدار شده و همزمان از مدار خارج شوند (اتوماتیک)

  

مدار فرمان راه اندازی الکتروموتور سه فاز به صورت چپگرد - راستگرد دستی (چپگرد - راستگرد کند)

مدار قدرت راه اندازی الکتروموتور سه فاز به صورت چپگرد - راستگرد دستی (چپگرد - راستگرد کند)

 

مدار فرمان راه اندازی الکتروموتور سه فاز به صورت چپگرد - راستگرد اتوماتیک (چپگرد - راستگرد تند) 

مدار قدرت راه اندازی الکتروموتور سه فاز به صورت چپگرد - راستگرد اتوماتیک (چپگرد - راستگرد تند)

  

مدار فرمان راه اندازی الکتروموتور سه فاز به صورت ستاره - مثلث دستی

مدار قدرت راه اندازی الکتروموتور سه فاز به صورت ستاره - مثلث دستی

  

مدار فرمان راه اندازی الکتروموتور سه فاز به صورت ستاره - مثلث اتوماتیک

مدار قدرت راه اندازی الکتروموتور سه فاز به صورت ستاره - مثلث اتوماتیک

  

مـدار فـرمان راه انـدازی الکـتروموتور سه فاز به صورت ستاره - مثـلث و چپگرد - راستگرد

مـدار قـدرت راه انـدازی الکـتـروموتور سه فاز به صورت ستاره - مثـلث و چپگرد - راستگرد

  

مدار فرمان راه انـدازی الکـتـرومـوتـور سه فاز به صورت دالانـدر با قـابـلـیـت راه اندازی دور کند

مدار قـدرت راه انـدازی الکـتـرومـوتـور سه فاز به صورت دالانـدر با قـابـلـیـت راه اندازی دور کند

  

مـدار فـرمان راه انـدازی الکـتـرومـوتـور سه فاز به صورت دالاندر با قـابـلـیـت راه اندازی دور تند و کند

مـدار قـدرت راه انـدازی الکـتـرومـوتـور سه فاز به صورت دالاندر با قـابـلـیـت راه اندازی دور تند و کند

 مدار فرمان راه اندازی الکتروموتور سه فاز به صورت ضربه ای

مدار قدرت راه اندازی الکتروموتور سه فاز به صورت ضربه ای

مدار راه اندازی دائم و موقت

مدار طراحی با تایمر

مدار تسمه نقاله

مدار کلید ضربه ای

مدار طراحی با میکروسوئیچ

مدار ماشین تراش

مدار موتور دالاندر

مدار موتور ستاره - مثلث و چپگرد - راستگرد

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:52  توسط 66  | 

 
کارگاه سیم پیچی ماشین ac 2

طراحی دیاگرام سیم بندی موتورهای القایی تک فاز

در ادامه مطلب



 

محاسبات مربوط به طراحی دیاگرام سیم بندی یک موتور القایی تک فاز ۲۴ شیار و ۴ قطب

دیاگرام سیم بندی یک موتور القایی تک فاز ۲۴ شیار و ۴ قطب

  

محاسبات مربوط به طراحی دیاگرام سیم بندی یک موتور القایی تک فاز ۲۴ شیار و ۲ قطب

دیاگرام سیم بندی یک موتور القایی تک فاز ۲۴ شیار و ۲ قطب

  

محاسبات مربوط به طراحی دیاگرام سیم بندی یک موتور القایی تک فاز ۲۴ شیار و ۴ قطب با استفاده از طرح دو فاز به ازای جفت قطب

دیاگرام سیم بندی یک موتور القایی تک فاز ۲۴ شیار و ۴ قطب با استفاده از طرح دو فاز به ازای جفت قطب

 

محاسبات مربوط به طراحی دیاگرام سیم بندی یک موتور القایی تک فاز ۳۶ شیار و ۶ قطب با استفاده از طرح دو فاز به ازای جفت قطب

دیاگرام سیم بندی یک موتور القایی تک فاز ۳۶ شیار و ۶ قطب با استفاده از طرح دو فاز به ازای جفت قطب

 محاسبات مربوط به طراحی دیاگرام سیم بندی یک موتور القایی تک فاز ۱۶ شیار و ۲ قطب با استفاده از طرح دو فاز به ازای قطب

دیاگرام سیم بندی یک موتور القایی تک فاز 1۶ شیار و ۲ قطب با استفاده از طرح دو فاز به ازای قطب

  

محاسبات مربوط به طراحی دیاگرام سیم بندی یک موتور القایی تک فاز ۲۴ شیار و ۲ قطب با استفاده از طرح دو فاز به ازای قطب

دیاگرام سیم بندی یک موتور القایی تک فاز ۲۴ شیار و ۲ قطب با استفاده از طرح دو فاز به ازای قطب 

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:52  توسط 66  | 

 

مقدمه: هنگامي‎‎كه استفاده از مبدل‎هاي الكترونيك قدرت در اواخر دهه 1970 معمول گرديد، توجه بسياري از مهندسين شركت‎هاي برق درمورد توانايي پذيرش اعوجاج هارمونيكي توسط سيستم‎هاي قدرت را برانگيخت . پيش‎‎بيني‎هاي مأيوس‎‎كننده‎‎اي از سرنوشت سيستم‎‎هاي قدرت درصورت اجازه استفاده ازاين تجهيزات انجام گرفت. درحالي‎‎كه بعضي ازاين نگراني‎ها احتمالاً بيش از حد قلمداد گرديدند، ولي بررسي مفهوم كيفيت برق مديون اين افراد به‎دليل پيگيري آنها درمورد اين مسئله مي‎‎باشد.
بروز هارمونيك در سيستم‎هاي برق اولين پيامد عناصر غيرخطي در شبكه است. به‎‎‎خاطر گسترش فزاينده استفاده از عناصر غيرخطي در سيستم‎‎هاي برق، مانند راه‎‎اندازها (درايورهاي تنظيم سرعت) و مبدل‎‎هاي الكترونيكي قدرت، مقدار هارمونيك شكل موج جريان و ولتاژ به‎‎‎طور چشمگيري افزايش يافته است و بنابراين اهميت موضوع كاملاً مشخص است.



بررسي مسائل هارمونيك‎‎ها منجر به تحقيقاتي گرديد كه نتايج آن نقطه‎‎نظرات متعددي درمورد كيفيت برق بود. به‎‎نظر برخي از محققين، اعوجاج هارمونيكي هنوز مهمترين مسئلـه كيفيت برق مي‎‎باشد. مسائل هارمونيكي با بسياري از قوانين معمولي طراحي سيستم‎هاي قدرت و عملكرد آن تحت فركانس اصلي مغاير است. بنابراين مهندس برق با پديده‎‎هاي ناآشنايي روبرو مي‎‎شود كه نياز به ابزار پيچيده و تجهيزات پيشرفته براي حل مشكلات و تجزيه و تحليل آنها دارد. گرچه تحليل مسائل هارمونيكي مي‎‎تواند دشوار باشد، ولي خوشبختانه همة سيستم قدرت داراي مشكل هارمونيكي نيست و فقط درصد كمي از فيدرهاي مربوط به سيستم‎هاي توزيع تحت‎‎تأثير عوامل ناشي از هارمونيك‎‎ها قرار مي‎‎گيرند. مشتركين برق در صورت وجود هارمونيك‎ها مشكلات زيادتري از شركت‎هاي برق را تحمل مي‎كنند. مشتركين صنعتي كه از محركه‎‎هاي موتور با قابليت تنظيم سرعت، كوره‎‎هاي قوس الكتريكي، كوره‎‎هاي القايي، يكسوكننده‎‎ها ، اينورترها، دستگاه‎‎هاي جوش و نظاير آن استفاده مي‎‎كنند، نسبت به مسائل ناشي از اعوجاج هارمونيكي ضربه‎‎پذيرتر از بقية مشتركين مي‎باشند.

اعوجاج هارمونيكي يك پديده جديد در سيستم‎هاي قدرت به شمار نمي‎رود. نگراني ناشي از اعوجاج در بسياري از دوره‎ها درسيستم‎هاي قدرت الكتريكي جريان متناوب وجود داشته و دنبال شده است. جستجوي منابع و مطالب تكنيكي دهه‎هاي قبل نشان مي‎دهد كه مقالات مختلفي دررابطه با اين موضوع انتشار يافته است. اولين منابع هارمونيكي شناخته‎‎شده، ترانسفورماتورها بودند و اولين مشكل نيز در سيستم‎هاي تلفن پديد آمد. استفاده گروهي از لامپ‎هاي قوس الكتريك به‎‎‎دليل مؤلفه‎هاي هارمونيكي توجهات خاصي را برانگيخت ولي اين مسائل به اندازه اهميت مسئله مبدل‎هاي الكترونيك قدرت در سال‎هاي اخير نبوده است.

خوشبختانه در طي اين سال ها پژوهشگران متوجه شده اند كه اگر سيستم انتقال به نحو مناسبي طراحي گردد، به‎‎نحوي كه بتواند مقدار توان مورد نياز بارها را به راحتي تأمين نمايد، احتمال ايجاد مشكل ناشي از هارمونيك‎ها براي سيستم قدرت بسيار كم خواهدبود، گرچه اين هارمونيك‎ها مي‎توانند موجب مسائلي در سيستم‎هاي مخابراتي شوند. اغلب در سيستم‎هاي قدرت مشكلات زماني بروز مي‎كنند كه خازن‎هاي موجود در سيستم باعث ايجاد تشديد دريك فركانس هارمونيكي گردند. دراين شرايط اغتشاشات و اعوجاجات، بسيار بيش از مقادير معمول مي‎گردند. امكان ايجاد اين مشكلات در مورد مراكز كوچك مصرف وجود دارد ولي شرايط بدتر در سيستم‎هاي صنعتي به‎دليل درجه زيادي از تشديد رخ مي‎دهد.

علت ايجاد اعوجاج هارمونيكي
اعوجاج هارمونيكي در سيستم‎هاي قدرت ناشي از عناصر غيرخطي مي‎باشد. عنصر غيرخطي عنصري است كه جريان آن متناسب با ولتاژ اعمالي نمي‎باشد افزايش چند درصدي ولتاژ ممكن است باعث شود كه جريان دوبرابر شده و نيز موج جريان شكل ديگري به خود بگيرد. اين مورد ساده اي از منبع توليد اعوجاج در سيستم قدرت مي‎باشد.
 
هر شكل موج اعوجاجي پريوديك را مي‎توان به صورت جمع موج‎هاي سينوسي بيان نمود. يعني وقتي كه شكل موج از يك سيكل به سيكل ديگر تغيير نكند، اين موج را مي‎توان به صورت جمع امواج سينوسي خالص كه درآن فركانس هر موج سينوسي، مضرب صحيحي از فركانس اصلي موج اعوجاجي است نمايش داد. اين موج‎هاي سينوسي كه فركانس آن‎ها ضريب صحيحي از فركانس اصلي مي‎باشند، هارمونيك‎هاي مؤلفه اصلي گويند. جمع اين موج‎هاي سينوسي به سري فوريه معروف است اين مفهوم رياضي اولين بار توسط فوريه رياضيدان فرانسوي مورد توجه قرار گرفت.

مزاياي فني و اقتصادي كاهش هارمونيك‎‎ها
اگرچه بحث تفصيلي درمورد خسارات هارمونيك‎‎ها ، پيچيده است ولي مي‎توان در يك جمع‎‎بندي اجمالي مزاياي كاهش هارمونيك‎‎ها را به‎شرح زير بيان نمود :
1)كاهش تلفات تجهيزات الكتريكي و شبكه برق‎‎رساني
2)آزادسازي ظرفيت تجهيزات شبكه مانند موتورهاي الكتريكي و ترانسفورماتورها
3)افزايش طول عمر تجهيزات به‎دليل كاهش تلفات و كاهش درجه حرارت
4)كاهش احتمال رزونانس موازي و سري در شبكه
5)افزايش راندمان موتورهاي الكتريكي
6)كاهش خطاي عملكرد رله‎‎ها ، تجهيزات كنترلي و حفاطتي شبكه ناشي از تأثيرات هارمونيك‎‎ها
7)كاهش خطاي قرائت دستگاه‎‎هاي اندازه‎گيري و كنتورها و در نتيجه كاهش خطاي مبالغ دريافتي از مشتركين
خونسرد عملكرد بهتر تجهيزات شبكه و مشتركين از جمله ماشين‎‎هاي الكتريكي به‎دليل كاهش اثر گشتاورهاي مخالف به‎واسطه برخي از هارمونيك‎‎ها
9)بهبود رضايت مشتركين به‎دليل بهبود كيفيت توان

تجهيزات آسيب‎‎پذير
موتورهاي الكتريكي ازجمله وسايلي هستند كه درمعرض بيشترين اثر نامطلوب هارمونيك‎ها قراردارند، هارمونيك حاصل‎‎از ولتاژ تغذيه باعث تلفات بالاتر در موتورهاي الكتريكي شده كه باعث كاهش ظرفيت‎ نامي مي‎‎شود. كاهش عمر و فرسوده شدن عايق‎‎بندي موتور به‎‎‎خاطر افزايش دماي داخلي بالاتراز ميزان نامي، از ديگر اثرات نامطلوب هارمونيك‎ها در موتورهاي الكتريكي است.
سيستم عايق‎‎بندي آسيب‎‎پذيرترين قسمت يك موتور الكتريكي درمقابل افزايش دماي حاصل‎‎از هارمونيك است.تسريع در‎ فرسايش، خطا و مشكلات عايقي و كاهش عمر معمول‎‎ترين نشانه‎‎هاي مشاهده شده در سيستم‎هاي عايقيِ درمعرض اضافه حرارت، مي‎‎باشد.
 
منابع توليد هارمونيك
پيدايش عناصر نيمه هادي و المان‎‎هاي غيرخطي نظير ديود ، تريستور و ... و استفادة فراوان از آنها در شبكه‎‎هاي قدرت عامل جديدي براي ايجاد هارمونيك در سيستم‎هاي قدرت به‎وجود آورد. كاربرد اين عناصر را مي‎توان در تجهيزات و سيستم‎هاي قدرت زير ديد:
-         كوره‎هاي قوس الكتريكي و القايي
-         يكسوكننده‎‎ها و مبدل‎‎هاي الكترونيك قدرت
-         تجهيزات مورد استفاده در كنترل‎‎كننده‎هاي سرعت ماشين‎هاي الكتريكي ( VSD)
-         كاربرد SVC بعنوان ابزار مهمي دركنترل توان راكتيو
-         بارهاي غيرخطي شامل دستگاه‎‎هاي جوشكاري
-         جريان مغناطيسي ترانسفورماتور
از سوي ديگر عوامل زير را نيز مي‎توان به عنوان توليدكنندة هارمونيك در نظر گرفت:
-         توليد شكل موج غير سينوسي توسط ماشين‎هاي سنكرون ناشي از وجود شيارها و عدم توزيع يكنواخت سيم‎‎پيچي‎هاي استاتور
-         توزيع غير سينوسي فوران مغناطيسي در ماشين‎هاي سنكرون
همچنين صنايع زير را مي‎توان از جمله عوامل توليد هارمونيك در شبكه‎هاي الكتريكي محسوب نمود:
-    صنايع شامل مجتمع‎هاي شيميايي و پتروشيمي و نيز صنايع ذوب آلومينيم كه از يكسوكننده‎هاي پرقدرت براي توليد برق DC مورد نيـاز انجام فرآيندهاي شيميـائي و ذوب آلومينيـم استفـاده مي‎كنند. با توجـه به قـدرت بالا، اين يكسـوكننده‎ها هارمونيك قابل ملاحظه‎اي در شبكة قدرت به وجود مي‎آورند.
-    استفاده از سيستم‎هاي الكترونيك قدرت در سيستم حمل و نقل برقي مانند اتوبوس برقي و متروها باعث مي‎شود سطوح زيادي از هارمونيك به سيستم توزيع تزريق شود.
-    بارهاي غيرخطي مانند كوره‎هاي قوس الكتريكي كه در صنايع ذوب‎‎آهن استفاده مي‎شود از عوامل توليد هارمونيك در مقياس بزرگ مي‎باشند.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:51  توسط 66  | 

1- انتقال انرژي الكتريكي : 
 1-1-1- انتقال الكتريسيته

انرژي الكتريكي را مي توان بطور اقتصادي به فاصله هاي دور انتقال داد برق از نيروگاه تا مراكز بار به وسيله  خطوط انتقال فشار قوي انتقال مي يابد يكخط انتقال را مي توان به يك لوله آب تشبيه كرد كه هر چه فشار آب بيشتر ولوله بزرگتر باشد آب بيشتري در لوله جريان خواهد يافت . به همين طريق هر چه ولتاژ بيشتر باشد وقطر سيم بزرگتر باشد انرژي الكتريكي بيشتري از خط انتقال عبور خواهد كرد .

هر چه ولتاژبيشتر باشد توليد و انتقال ارزانترتمام مي شود زيرا از رابطه p=vicosθ    افزايش ولتاژ موجب كاهش جريان براي مقدار معين توان مي شود . هر چه جريان كمتر باشد اندازه كابل ها  ,سويچ گير هاي حفاظتي كوچكتر و تلفات توان خط ( P=RI ) نيز كنترل و كمتر مي شود .



 

 2-1-1-ساختمان يك خط انتقال نمونه

 

    اكثر خطوط انتقال ، هوايي مي باشند زيرا خطوط زميني براي انتقال به فواصل زياد بسيار گران تمام مي شوند . هاديهاي  خطوط هوايي به وسيله برج هاي مشبك فولادي  ( دكل ) يا پايه هاي چوبي ، جهت عايق نمودن هاديها از زمين در هر نوع شرايط جوي و جلوگيري از تماس اتفاقي مي باشد . استفاده از پايه هاي بلند اين امكان را مي دهد تا از اسپان هاي بلند و در نتيجه تعداد پايه هاي كمتري استفاده كرد .

    اندازه يا طول مقره بستگي به ولتاژ خط دارد . هرچه ولتاژ قويتر باشد بايستي طول زنجيره مقره بلندتر باشد . هادي ها معمولا از آلومينيوم رشته اي با هسته فولادي است . آلومينيوم هادي خوبي براي الكتريسيته است ، و هسته فولادي موجب مقاوم شدن هادي مي شود . يك هادي مقاوم وسبك را مي توان با فلش (شكم) كمتر در اسپان هاي بلند استفاده نمود  .

3-1-1- ولتاژ خط انتقال

    نيروي الكتريكي در نيروگاه ها 13800 ولت تا 24000 ولت توليد مي شود . يك ايستگاه ترانسفورماتور افزاينده بعد از نيروگاه ولتاژ را تقويت مي كند تا با بازده بالا انتقال يابد . ولتاژهاي توليدي در نيروگاه تا ولتاژهاي  معمول خط انتقال يعني 123000 ولت ، 230000 ولت ، 400000 ولت ، 500000ولت و 765000 ولت افزايش مي يابد . به عنوان يك قاعدﮤ كلي ، اگر ولتاژ 2 برابر گردد انرژيي كه ميتوان انتقال داد بدون افزايش تلفات خط ، چهار برابر مي شود .

    در خطوط فشار قوي ( EHV ) مانند مدارهاي 500 كيلو ولت از هادي هاي باندل كه 2 ، 3 يا 4 هادي به وسيله اسپيسر دمپر به يك ديگر متصل مي گردند استفاده مي شود باندل نمودن هادي ها باعث جلوگيري از مشكلات ولتاژ فشار قوي مي گردد . در هر صورت ظرفيت افزايش يافته هادي علاوه بر ولتاژ فشار قوي اجازه مي دهد يك خط 500 كيلو ولت تك مداره تا معادل 8 مدار 230 كيلو ولت انرژي حمل نمايد .

4-1-1- پست هاي سيستم انتقال

    پايانه هاي خطوط انتقال در پست ها و سوئيچ ها ياردها ( محوطﮥ كليدها ) قرار دارند . پست هاي برق ، ايستگاه هاي تغيير ولتاژ هستند . ترانسفورماتورها ميتوانند به منظور انتقال مؤثر ولتاژ فشار قوي ، ولتاژ را افزايش و يا براي توضيع نيرو در جاده ها و خيابان ها ، ولتاژ را كاهش دهند .

 تجهيزات به گونه اي  طراحي شده كه ايستگاه بتواند در صورت خارج شدن قسمتي از مدار ، خط فوق توزيع مربوطه را تغذيه نمايد .

5-1-1- سوئيچ يارد (محوطه كليد ها )

    سوئيچ ياردها در پايانه هاي خطوط انتقال قرار دارند . يك سوئيچ يارد شامل كليد هاي قطع كننده ( سكسيونر ها ) ، مدار شكن ها ( ديژنگتورها ) ، رله ها و سيستم هاي ارتباطي براي محافظت مدار مي باشد . سوئيچ يارد اين مكان را ايجاد مي كند كه برق از مدارهاي مختلف عبور كند و اطمينان حاصل شود كه حتي  وقتي بعضي از قسمتهاي يك سيستم قدرت خراب مي شود مشتريان به طور مستمر سرويس دريافت دارند .

    مدار هاي متعددي كه به داخل يك سوئيچ يارد وارد مي شود به وسيله يك مدار مشترك به نام باس يا شينه به يكديگر ارتباط مي يابند . اصطلاح باس از كلمه اومني باس به معني مجموعه اي از اشياء متعدد يا در اين حالت يك مجموعه اي از مدار ها متعدد است . باس بايستي بتواند جريان خطي زيادي را حمل نمايد بنابراين معمولا شامل هاديهاي خيلي بزرگ يا لوله مسي يا آلومينيومي بزرگ و سخت مي باشد . سوئيچ يارد معمولا در داخل همان محوطه محصور شدة ترانسفورماتور قرار دارد و قسمتي از پست را تشكيل مي دهد .

كليدهاي فشار قوي :

1- سكسيونرها : يكي از كليدهاي فشار قوي بوده كه به دو صورت قابل قطع زير بار و غير قابل قطع زير بار مي باشد . كه به صورت دستي كنترل شده و عمل قطع و وصل انجام مي شود .

2- اتوريكلوزرها : اين كليد براي محافظت مدار و يا شبكه هاي فشار متوسط و قوي استفاده مي شود كه بصورت اتوماتيك عمل مي كنند . عملكرد اين كليد به اين صورت است كه چنانچه در شبكه ما اتصال كوتاهي رخ دهد اين كليد بصورت اتوماتيك 3 يا 4 مرتبه عمل قطع و وصل را انجام مي دهد و چنانچه مشكل شبكه (اتصال كوتاه) برطرف شده باشد به حالت وصل مي ماند و اگر برطرف نشده باشد در قطع و وصل چهارمي ديگر وصل نمي شود .

3- ديژنگتورها : اين كليد به صورت قطع و وصل خودكار مي باشد و بيشتر براي محافظت تجهيزات فشار قوي استفاده مي شود .

4- سكشن آلايزرها : اين كليد عملكردش تقريبا همانند ريكلوزرها مي باشد كه در شبكه هاي شعاعي بعضاً هم حلقوي از اين نوع كليد استفاده مي شود ، كه وظيفه آن كنترل يك قسمت مخصوص است .

6-1-1- ارتباط بين پستها

    اپراتور بايد وسايل اندازه گيري و آلارمها (هشداردهنده ها ) كه شرايط ايستگاهها و خطوط منطقه تحت كنترل را نشان مي دهد در اتاق كنترل بازبيني كند . اپراتور مي تواند خارج از نيروگاه و ايستگاه ، كليد ها را به طريق كنترل از راه دور باز و بسته نمايد . اين كنترل عاليه سيستم بستگي به سيستمهاي ارتباطي  بين ايستگاهها (مركز ديسپاچينگ ) دارد .

    براي انتقال اطلاعات و علائم از ايستگاهي به ايستگاه ديگر از خطوط تلفن ، كابل نوري ،سيستمهاي PLC ، سيستمهاي ماكروويو يا ماهواره اي استفاده مي شود . چون وجود ارتباط مداوم بسيار حياتي مي باشد ، معمولا بيش از يك سيستم ارتباطي در محل وجود دارد تا در صورت خرابي يك سيستم ، بتوان از سيستم ديگري استفاده نمود .

    خطوط تلفن يك ارتباط عادي بين ايستگاه ها است . استفاده از كابل نوري در شيلدوايرا بر روي خطوط انتقال ، يك حالت ارتباطي معمول مي باشد .

    سيستم plc از هاديهاي خط قدرت  براي انتقال اطلاعات استفاده مي نماييم . علائم ارتباطي به وسيله دستگاهي كه شبيه به ترانسفورماتور ولتاژ است ولي در اصل يك ترانسفورماتور كوپلينگ ولتاژ خازني ( ccvt ) مي باشد ،به هاديهاي قدرت ارسال يا از آن دريافت مي شود . به منظور نگهداري علائم انتقالي در قسمتهاي مورد نظر خط قدرت ، تله هاي موج  نصب مي گردد. تله موج كه شبيه به يك سيم پيچ استوانه اي بزرگ مي باشد از پيشروي علائم در خط جلوگيري مي نمايد .

    ارتباطات ماكروويو بين ايستگاه ها نياز به برج (دكل) همراه با آنتن در هر ايستگاه دارد . آنتن هاي فرستنده و گيرنده ماكروويو نياز به يك ديد مستقيم و بدون وجود هيچ مانعي در بين آنها دارد . بايستي برج هاي ماكروويو در صورت امكان بر روي تپه ها  به فاصله 60 تا 100 كيلومتر (35 تا 60 مايل ) نصب گردند تا علائم بين برجها مخابره شود .

7-1-1- استخرهاي قدرت الكتريكي

    نيروگاه به وسيله خطوط انتقال در استخرهاي بزرگ منطقه اي يا شبكه هايي كه از مرز هاي شركت هاي برق مي گذرد به يكديگر مرتبط مي شوند . قدرت الكتريكي توسط اين شبكه ها به هر جايي كه نياز باشد ارسال مي گردد . بدين ترتيب اين انرژي مي تواند مثلا در فصل گرما براي تغذيه اوج بارهاي حرارتي به شمال كشور ارسال شود . 

    لوازم اندازه گيري در پايانه هاي خطوط يا پست هاي تبديل مقدار انرژي كه از مرزهاي سرويس دهي شركت ها عبور مي كند وهمچنين مبالغي كه بايستي بابت آنها پرداخت يا به حساب منظور شود را تعيين مي كنند . بعضي اوقاتيك شركت برق فقط انرژي رااز يك همسايه توليد كننده برق به همسايه ديگر انتقال مي دهد و هزينه اين انتقال (ترانزيت) را دريافت مي دارد .

8-1-1- خاموشي و ضعف ولت

    خاموشي بزرگ در شمال شرقي ايالات متحده آمريكا و كانادا در نهم نوامبر 1965 ميلادي بوجود آمد . اشكال يك عنصر در استخر قدرت (شبكه) موجب شروع يك زنجيره واكنشي شد كه منجر به از دست رفتن بيشتر آن شبكه گرديد . از آن زمان پيشرفت طرح هاي حفاظتي آغاز و نصب تجهيزات حفاظتي خوب براي جدا نمودن نقاط معيوب صورت گرفت شركتهاي برق همواره با بهبود طرح هاي حفاظتي ، داراي فرايندهايي هستندكه در صورتي كه تقاضا (ديماند) مشتركين بيش از مقدار انرژي توليد شده سيستم باشد ، عملا ولتاژ شبكه را كاهش مي دهند ويا بار را از سيستم كم مي كنند .

    وقتي تقاضاي مشتريان از استخر قدرت بيشتر از مقدار توليد شده يا تامين شده توسط خطوط انتقال باشد ، انداختن بار آخرين مرحله تصميم گيري خواهد بود.  قبل از قطع بار ، بايستي ولتاژ شبكه را پايين آورد تا كل انرژي تحويل شده به مشتركين كاهش يابد .

    ممكن است مشتركين (مشتريان برق) مشاهده كنند كه روشنايي آنها قدري كم نور شده و موتورهاي روشن ، گرمتر ميشوند .بعضي از شركت هاي برق خارج از كشور هر دو سال يكبار به وسيله كاهش ولتاژ سيستم آزمايشاتي را انجام مي دهند . ضعف ولت معمولا تنها توسط مشتركيني ملاحظه مي شود كه تقريبا كمتر از ولتاژ نرمال در مواقع معمول دريافت مي دارند .

    اگر بعد از اينكه عملا ولتاژ سيستم كاهش يافت هنوز نتوان به اندازه كافي تقاضاي مشتركين را تامين كرد ، بايستي ابتدا بعضي از صنايع بزرگ را از مدار خارج كرد . معمولا اين صنايع قراردادي با شركت برق دارند كه اجازه ميدهد بارشان در مقابل نرخ بهتر يا فروش كمتر برق ، كاهش يابد .

    در زمستان سرد غير عادي سال ميلادي 1994 – 1993 ، تامين برق مورد تقاضاي مشتركين در واشنگتن D.C بسيار مشكل شد و به جاي اجراي خاموشي گردشي (دوره اي) ، مقدار تقاضا يا مصرف مشتركين به وسيله بستن ساختمانهاي دولتي در سردترين روزها كاهش داده شد .

    وقتي همه روشهاي ديگر براي كاهش بار با شكست مواجه مي شود بايستي بار الكتريكي عموم مردم به طور گردشي بر اساس زمان بندي واعلان قبلي كاهش يابد . كاهش بار به طور گردشي (نوبتي) باعث اعمال خاموشي در يك منطقه جغرافيايي معيني براي يك دوره زماني مشخص معمولا 30 تا 60 دقيقه مي شود .

 

2-1- توزيع انرژي الكتريكي :

1-2-1- اصول توزيع

    سيستم انتقال ، انرژي الكتريكي را تا نزديكي مراكز بار انتقال مي دهد و سپس ولتاژ به ولتاژ فوق توزيع و يا مستقيما به ولتاژ توزيع تبديل مي شود .

سيستم توزيع  شامل خطوط فوق توزيع است كه پست هاي توزيع را تغذيه مي نمايد تا ولتاژ را تا سطح ولتاژ فيدر توزيع كاهش دهد . فيدرهاي توزيع انرژي را به يك ترانسفورماتور (kv 4/0/ 20 )در محل مصرف عمومي و يا در مستغلات مشتري (مصرف اختصاصي) تحويل مي دهد و ولتاژ را تا سطح ولتاژ مصرف تبديل  مي كند .

شش قسمت اصلي يك سيستم توزيع :

1-   مدارهاي فوق توزيع :

    مدارهاي فوق توزيع ، نيرو را از پستهاي بزرگ انتقال به پستهاي توزيع منتقل مي كنند . ولتاژهاي فوق توزيع براي مثال عبارتند از kv 63 پايه ها و عايقبندي در اين ولتاژها به اندازه كافي كوچك هستند كه بتوان خطوط را در كنار جاده ها احداث نمود . بعضي از شركت ها خطوط فوق توزيع را قسمتي از سيستم انتقال مي دانند .

2- پست فوق توزيع :

ترانسفورماتور پست فوق توزيع ولتاژ فوق توزيع را به ولتاژ توزيع كاهش مي دهد .پست شامل :

  • -     سوئيچگير مدار فوق توزيع
  • -     ترانسفورماتور
  • -     دستگاه تنظيم كننده ولتاژ (رگلاتور ولتاژ)
  • -     باس يا شين ولتاژ توزيع
  • -     چندين فيدر متصل به باس
  • -     سوئيچ گير براي فيدر توزيع

بسياري از پست هاي فوق توزيع از يك اتاق كنترل مركزي (ديسپاچينگ توزيع) از راه دور كنترل مي شوند . اتاق كنترل مركزي به داده هاي پست نظير ولتاژ فيدر و مقدار بار دسترسي دارد . و مي تواند سوئيچ گير پست را قطع و وصل نمايد . نظارت عاليه و تحصيل داده ها (scada ) يك فن ارتباطات است كه به منظور كنترل ازراه دور يك پست استفاده مي شود .

2-   فيدرهاي اوليه (پرايمري) :

 فيدرهاي اوليه (فشارمتوسط) سه فاز كه از پست خارج مي شوند مي توانند زميني يا هوايي باشند . يك فيدر توزيع مي تواند شعاعي باشد و به صورت شاخه اي در يك خيابان يا جاده كشيده شود . فيدر توزيع مي تواند به صورت شبكه رينگ (حلقوي) نيز از دو جهت تغذيه شود و معمولا از يك كليد (سكسيونر) در نقطه باز حلقه بين فيدرها استفاده مي شود تا آنها را از يكديگرمجزا كند و يا مي توان بوسيله سوئيچ گير خودكار آنرا بسته يا رينگ نمود .

3-   ترانسفورماتور توزيع :

ترانسفورماتور توزيع كه مشتركين را تغذيه مي نمايد ولتاژ فيدر اوليه (پرايمري) را به ولتاژ مصرف كاهش مي دهد . اين ترانسفورماتور مي تواند با توجه به نوع سيستم توزيع ، بصورت هوايي بر روي يك كرسي فلزي يا سكوي بتوني يا در يك قسمت سقفدار (مانند اتاق يا كيوسك) نصب شود .

4-   سيستمهاي ثانويه :

يك سيستم ثانويه مي تواند شامل يك سرويس تكفاز باشد كه به وسيله يك ترانسفورماتور تغذيه مي شود تا يك شبكه باس ثانويه كه داراي چند فيدر است .

5-   اتصالات مشتركين :

كابل سرويس مشتركين مي تواند به صورت هوايي يا زميني تكفاز يا سه فاز مستقيما از ترانسفورماتور يا باس ثانويه تغذيه شود .مسئوليت شركت برق يا توزيع براي سرويس مشتركين معمولا تا كنتور مشترك است .

توضيح : منظور از سوئچ گير ، لوازم اتصال خط مانند كلمپ خط گرم و لوازم حفاظتي و مجزاكننده مانند انواع كليدها ، فيوزها و سكسيونرها فشار متوسط و قوي مي باشد .

2-2-1- طرح هاي سيستم توضيع :

يك سيستم توضيع را ميتوان به گونه اي طراحي كرد كه درجات مختلفي از تداوم سرويس دهي را داشته باشد سيستمي كه داراي درجه بالايي از تداوم سرويس دهي است گرانتر تمام مي شود و معمولا در شهر ها در نقاطي كه تراكم مشتريان زياد است احداث مي گردد .

3-2-1- سيستم شعاعي (راديال) :

طرح يك سيستم شعاعي بسيار شبيه به يك درخت است شاخه هاي تك فاز يا سه فاز يا انشعابات جانبي مشتركي را در طول مدار تغذيه مي نمايد هادي شا خه  اصلي بيشترين بار را حمل مي كند و هر چه شا خه هااز شاخه اصلي پيشتر ميروند كوچكتر ميگردند معمولا طول يك فيدر به وسيله ولتاژ و بار متصل شده محدود مي گردد.

4-2-1- مدار اوليه (پرايمري)حلقوي :

يك مدار حلقوي يا رينگ از پست توزيع شروع و در منطقه اي كه بايستي سرويس دهد يك حلقه مي سازد يعني منطقه را دور ميزند و به پست بر مي گردد.

اين حلقه شبيه به 2 مدار شعاعي است كه انتهاي انها به يكديگر بسته شده است وقتي اشكالي در خط پيش مي ايد مدغار اوليه حلقوي بيشتر مشتركين را به طور خود كار يا دستي تغذيه مي كند مدار شكن ها در حلقه نسب ميشوند تا قسمت معيوب حلقه به طور خود كار به وسيله باز شدن هر كدام از 2 مدار شكن از حلقه مجزا شود .

رله ها وضعيت اضا فه بار را حس مي كنند و موجب قطع مدار شكن ها در هر طرف محل خطا مي گردد و ان تكه را جدا مي نمايند . انشعابات جانبي حلقه يا رينگ معمولا شعاعي هستند عموما انشعاب زميني به صورت حلقوي است ولي يك كليد سكسيونر يا جمپر باز در حلقه وجود دارد كه موجب مي شود2 طرف حلقه به  صورت شعاعي تغذيه مي شود .

 

5-2-1- شبكه اوليه (پرايمري)

شبكه اوليه در مركز شهر كه داراي بار سنگيني مي باشند استفاده مي شود . شكل اوليه شبيه به مدار اوليه حلقوي مي باشد به استثناي اين كه ان حلقه از يك پست و يا يك فيدر از هر پست تغذيه مي شود.

6-2-1- سيستم هاي هوائي و زميني

يك سيستم توزيع ،هوائي يا زميني و يا تركيبي از هر دو است. سيستم هاي زميني بيشتر در مراكز شهري و سيستم هاي هوائي در روستا ها استفاده مي گردد.

مزاياي سيستم هوائي عبارتند از :

  • - هادي سوئيچ گير و ترانسفورهاي مربئطه هزينه كمتري دارد.
  • - عيب يابي و تعميرات سيستم ساده و سريع تر است.
  • - هزينه بسيار كمتري براي ارتقاء سيستم هوائي موجود نياز است زيرانياز كمتري به حفاري خيابانها، فضاي سبز و سنگ جدول و غيره دارد.

مزاياي سيستم زميني نيرو عبارتند از:

  • - در معرض طوفان ،درختان ،حوادث اتو مبيل، شكست مقره هاو آلودگي مقره ها نيست.
  • - از نظر زيبايي بيشتر مورد قبول مردم است.
  • - در مناطق حساس و پر ترافيك مانند اطراف فرودگاه ها ضرورت دارد.
  • - از كابل هاي زيردريايي براي عبور درآب ها استفاده مي شود.
  • - مردم كمتر در معرض شوك الكتريكي قرار مي گيرند.(ايمني بيشتري دارد)
  • - معمولا دوام و عمر بيشتري دارد.

7-2-1- دو نوع سيستم زميني    

معمولا دو نوع سيستم زميني سيستم كانالو سوراخ تعميرات(سوراخ آدم رو)و ديگري سيستم دفن مستقيم وجود دارد.از سيستم كانال و سوراخ يا دريچه تعميرات در شهر ها استفاده مي گرددزيرا كندن بتون و سنگ فرش خيابان هادر مواقع حفاري به منظور تعمير يل ارتقاءسيستم زميني بسيار گران تمام مي شود.در اين سيستم كابل هاي زميني در كانال هاي بتوني و لوازم شبكه از قبيل ترانسفورماتورها و كليدهاي قطع ووصل در پايين از سطح زمين دئر پست قرار دارد.

سيستم دفن مستقيم بيشتر در بخش هاي كوچك مسكوني كه كابل در زير چمن يا خاك دفن شده استفاده مي گردد. معمولا از ماسه در اطراف كابل براي جلوگيري از وارد آمدن فشار بر روي آن استفاده مي شود. زيرا نقاط تحت فشار اغلب منبع خرابي كابل هستند.در سيستم دفن مستقيم نيز به هنگام عبور از عرض خيابان ها و جاده ها از كانال هاي مناسب نيز استفاده مي گرددو ترانسفورماتور و سوئيچ گير ها اغلب بر روي سكو هاي بتوني يا فلزي در سطح زمين نصب مي شو

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:51  توسط 66  | 

مقدمه
در سال 1871 ميلادي ( 1250 هجري شمسي ) ماشين گراماختراع شد . اين اختراع گامي اساسي در راه ايجاد صنعت برق تجاري بود ، زيرا پس ازآن تبديل انرژي مكانيكي (و هر نوع انرژي ديگري كه بتوان از آن كار مكانيكي به دستآورد ) به انرژي برقي ممكن گرديد
يازده سال پس ازآن، درسال 1882 ميلادي ( 1261هجري شمسي ) توماس اديسون نخستين موسسه برق تجاري خود را براي تامين روشنايي در يكياز خيابانهاي نيويورك افتتاح كرد
بيان دو واقعه مهم بالا براي درك رابطه زمانيبين تاريخ پيدايش صنعت برق در جهان و در ايران خالي از فايده نيست . چنانكه خواهدآمد ، اولين مولد برق در ايران ، سه سال بعد از موسسه برق توماس اديسون به كارافتاد.


از 1300 تا 1310
از اوايل سالهاي 1300 به بعد ، با آگاهي و علاقه مندشدن بخش خصوصي به مزاياي برق ، رفته رفته در شهرهاي بزرگ و كوچك ايران ، تاسيساتيبراي توليد و توزيع و فروش برق ايجاد شد. اين گونه فعاليتها عموما" درمقياسهاي كوچكومحدود وبه طور كلي منفك از يكديگر انجام مي گرفت و البته نياز به هماهنگي هم درشرايط آن روزهاي نخستين احساس نمي شد درهمين دوران برخي ازكارخانه هاي صنعتيجديدالتاسيس هم داراي تجهيزات برق اختصاصي شدند كه داد و ستدهايي نيز با موسسات برقشهري داشتند
در 1310
براي نخستين بار ، شبانه روزي كردن برق در تهران درميان دولتمردان آن زمان مطرح شد و اقدامات اوليه براي تحقق آن صورت گرفت
در 1316
پس از شش سال و با گذراندن نشيب و فراز هاي بسيار ،بلاخره در تاريخ 25 /6 / 1316 نيروگاه بخاري ساخت كارخانه اشكوداي چكسلواكي با قدرت 4x1600= 6400 كيلو وات در محل كنوني شركت برق منطقه اي تهران نصب شد و به بهرهبرداري رسيد
با وجود آن كه در تهران به علت وسعت شهر و موقعيت سياسي و اجتماعيآن ، سرمايه گذاري دولتي در كار برق رساني پيش از همه شهرهاي ديگر آغاز شد ، بخشخصوصي هم در امور برق رساني در تهران فعاليت قابل توجهي داشت به نحوي كه در سال 1341 يعني سال تاسيس سازمان برق ايران تعداد شركتهاي خصوصي كه هر يك در بخشي از شهرتهران فعاليت داشتند به 32 شركت رسيده بود
از 1327 تا 1334
برنامه هفت ساله اول عمراني كشور به اجرا در آمد كهدر آن سهمي هم براي توسعه صنعت برق در كشور با هدف تامين مصارف خانگي شهرها و فراهمكردن رفاه اجتماعي منظور شده بود. دراين دوران،سازمان برنامه تعدادي مولدهاي ديزلي 50و 100و 150 كيلو واتي را خريداري كرد و با بهره 3 درصد به شهرداريها و شركتهايبرق خصوصي فروخت و چون دريافت كنندگان كمك سازمان برنامه مي بايست تواناييهاي لازمرا براي تقبل 50 درصد از سرمايه گذاريها داشته باشند ، طبعا" اعطاي كمكها ، بهامكانات مالي شهرها و موسسه هاي وام گيرنده بستگي داشت . به هر صورت در پايانبرنامه اول،جمع قدرت نامي نصب شده در كشور به 40 مگاوات و ميزان انرژي توليديسالانه به حدود 200 ميليون كيلو وات ساعت رسيد
از 1334 تا 1341
در اين سالها برنامه هفت ساله عمراني دوم كشور اجراشد . سهم برق در اين برنامه ، با هدف افزايش توليد برق ، كاهش هزينه هاي توليد وپايين آوردن سطح عمومي نرخها درنظر گرفته شده بود
دراين برنامه بنابر توصيهكارشناسان خارجي و داخلي، براي توسعه تاسيسات برق چهار حوزه فعاليت به شرح زيرمنظور گرديد
- منطقه خوزستان
- منطقه تهران
- شهرهاي بزرگ
- شهرهاي كوچك

بدين ترتيب مي توان گفت كه انديشه فراتررفتن از محدوده هر شهر دركار توسعه صنعت برق،در برنامه دوم شكل گرفت. شروع به كاراحداث نيروگاههاي برق آبيمهم كشور شامل سد دز (با ظرفيت اوليه 130 مگاوات ) ، سد كرج (با ظرفيت 91 مگاوات ) و سد سفيدرود (با ظرفيت اوليه 35 مگاوات) همچنين نيروگاه حرارتي طرشت (به قدرت 50مگاوات)ازدستاوردهاي اين دوره است
در 1341
برنامه سوم عمراني كشورآغاز شد. با پذيرش نقش زيربنايي صنعت برق،در اين برنامه نيز اعتبارات قابل توجهي براي اين صنعت تخصيص داده شد
در اين برنامه كه 5/5 سال به طول انجا ميد(تاآخرسال 1346)،در مجموع،مبلغ 21ميليارد ريال در صنعت برق هزينه گرديد كه به طوركلي سه بخش را در بر مي گرفت

تامين برق مراكز عمده مصرف شامل شهرهاي تهران، اصفهان، شيراز، مشهد، تبريز،رشت -
همدان و ساري
تامين برق 17 شهر متوسط كشورشامل شهرهاي آمل،چالوس،اردبيل،مراغه، لاهيجان،اروميه، يزد -
بهشهر، بوشهر، قزوين ،كرج، بابلسر وكرمانشاه
تامين برق شهرهاي كوچك -

در همين برنامه ، تشكيل سازمان برقايران به منظور اشراف كلي واعمال مديريت بر برنامه ريزي و اجراي طرحهاي توليد وايجا د موسسات توليد ، انتقال و توزيع برق و هدايت سرمايه گذاريها دربخش برق پيشبيني شده بود اين سازمان درتاريخ 13دي ماه1341 رسما" تشكيل يافت و تا پايان سال 1344 كه عملا" دروزارت آب وبرق ادغام شد به انجام وظايف خود ادامه داد
در 1343
قانون تاسيس وزارت آب و برق در تاريخ 16/1/1343 بهدولت ابلاغ شد در بخش برق ، وظايف زير برعهده اين وزارت خانه قرار مي گرفت
تهيهو اجراي برنامه ها و طرحهاي توليد و انتقال نيرو به منظور تاسيس مراكز توليد برقمنطقه اي -
و ايجادشبكه هاي فشار قوي سراسر كشور
اداره تاسيسات برق كه بهموجب بندبالاايجاد مي شود و بهره برداري از آنها -
نظارت بر نحوه استفاده ازنيروي برق -

سازمان برق ايران در سال 1344 به عنوان واحد برق در وزارت آب وبرق ادغام شد، وسازمانهاي ديگري هم كه تاآن زمان به توسط سازمان برنامه ، سازمانبرق ايران يا به نحو ديگر به وجود آمده بودند تحت پوشش نظارتي وزارت آب و برق قرارگرفتند
در آذر ماه همين سال اساسنامه شركتهاي برق منطقه اي تدوين شد و بدينترتيب تعداد 10 شركت برق منطقه اي ( علاوه برسازمان آب و برق خوزستان كه از سال 1339 ايجاد شده بود ) تشكيل يافت كه عبارت بودند از شركتهاي برق منطقه اي ( تهران ) ، ( اصفهان ) ، ( خراسان ) ، ( آذربايجان ) ، (فارس) ، (مازندران) ، (گيلان) ، (جنوب شرقي ايران) ، (كرمانشاهان) و (همدان و كردستان)
با تشكيل شركتهاي برقمنطقه اي ، صنعت برق كشور صورتي سازمان يافته و منسجم به خود گرفت. حوزه هاي زيرپوشش اين شركتهادرابتدا تمامي مساحت كشوررا شامل نمي شد و نوعا" از تقسيمات كشورينيزپيروي نمي كرد تعداد و حوزه هاي جغرافيايي شركتهاي برق منطقه اي با گذشت زمانمشمول اصلاحاتي گرديد به طوري كه درحال حاضر تعداد آنها به 16 مي رسد و در مجموعتمامي كشور را پوشش مي دهند
در 1347
برنامه چهارم عمراني آغازشد. دراين برنامه كهتاپايان سال 1351 ادامه داشت ، نگرش به صنعت برق به عنوان يك صنعت زيربنايي و باديد كلان نگر صورت گرفت . احداث خطوط انتقال نيروي سراسري و تاسيس نيروگاههاينسبتا" بزرگ آبي وحرارتي درطي اين برنامه نضج گرفت، به طوري كه درطول برنامه،جمعقدرت نامي نصب شده در كشور از 1599 مگاوات به 3354 مگاوات ( با رشد متوسط سالانه 16درصد) وتوليد انرژي برق از 4133 ميليون كيلووات ساعت به9553 ميليون كيلووات ساعت ( با رشد متوسط سالانه 2/18 درصد ) بالغ گرديد و تعداد مشتركان در تعرفه هاي مختلف به 1669 هزار رسيد
در طي اين برنامه ، مسئوليت برق نزديك به 190 شهر كشور بر عهدهوزارت آب و برق قرار گرفت . برق مورد نياز شهرهاي كوچك ، شهركها و تعدادي ازروستاهاي برقدار به توسط بخش خصوصي و يازيرنظر و بامديريت شهرداريها تامين ميشد.تعداد روستاهاي برقدار كشور از 148 روستا درآغاز برنامه ، به 491 روستا درپايانسال 1351 رسيد
در 1348
به منظور استفاده صحيحتر از منابع و امكان برقراريدادوستد انرژي برقي بين مناطق و كارتوليدوانتقال برق به طور كلان ، شركت توليدوانتقال نيروي برق ايران (توانير) از سال 1348 آغاز به كار كرد. اساسنامه و شرحوظايف اين شركت ، بنا بر ضرورتهاي زمان تا كنون سه بار مورد تجديد نظر قرار گرفتهاست . ازسال 1375 تا كنون ، اين شركت با نام "سازمان مديريت توليد و انتقال نيرويبرق ايران ( توانير ) " ، فعاليتها و ماموريتهاي معاونت امور
برق وزارت نيرو رانيز برعهده دارد و هدفها وظايف زير را دنبال ميكند

تهيه و تدوين و پيشنهاداستراتژيها و سياستها و برنامه هاي برق كشور -
برنامه ريزي ، نظارت ، كنترل وهدايت برق كشور -
ايجاد هماهنگي و نظارت بر شبكه سراسري برق -
برنامه ريزي ونظارت بر مصارف مختلف برق كشور -
حفظ يكپارچگي و پايداري شبكه سراسري برق كشور -
در 1352
برنامه پنجم عمراني از اين سال آغاز شد و تا پايانسال 1356 ادامه يافت سياستهاي زير بر اجراي برنامه اي صنعت برق در اين برنامه حاكمبود
احداث واحدهاي بزرگ حرارتي در شمال و جنوب كشور به لحاظ دسترسي آسانتر بهمنابع -
سوخت و سواحل دريا
ايجاد سد بر روي رودخانه هاي بزرگ -
تامين برقمناطق دور افتاده كشور با استفاده از نيروگاههاي ديزلي -

درسالهاي برنامهپنجم، معادل 1332 مگاوات برظرفيت نيروگا ههاي گازي كشورافزوده شد كه علت اصلي آنتاخير دربهره برداري از نيروگاههاي آبي در دست احداث بود دراين برنامه، تا سيسنيروگاههاي هسته اي نيز در دستور كار قرارداشت كه علي رغم هزينه ها و تبليغاتفراوان ، نتيجه مشخصي عايد نساخت
به هر صو رت قدرت نصب شده در پا يا ن بر نا مهبه 7105 مگا وات ( با 2/16 درصد رشد متوسط سالانه )،انرژي سالانه توليد شده به 18984 ميليون كيلووات ساعت ( با 7/14 درصد رشد سالانه ) رسيد و تعدادمشتركان به 3105 هزار بالغ گرديد . تا پايان اين برنامه تعدادي از روستاهاي كشور نيز از برقبهره مند شدند
در 1353
باتوجه به اينكه نهادهاو سازمانهاي مختلفي دست اندركار مقوله انرژي دركشور بودند و هماهنگي بين آنها ضروري مي نمود ، به موجب لايحهقانوني مصوب 28 / 11 / 1353 با محول شدن برنامه ريزي جامع فعاليتهاي مربوط به انرژيكشور، نام وزارت آب و برق به وزارت نيرو تغييركرد
در 1357
با پيروزي انقلاب اسلا مي ، بازنگري اساسي در خط مشيهاي صنعت برق و هماهنگ ساختن آنها با هدفهاي عالي انقلاب ضرورت يافت. عنايت بهمفهوم خودكفايي، سرما يه گذاري دركارخانه هاي توليد كننده تجهيزات مورد نياز صنعتبرق ، كوتاه كردن دست مشاوران و پيمانكاران خارجي و توجه به بهره گيري بهينه ازتواناييهاي داخلي ، صنعت برق را در راستاي تازه اي قرارداد ، فراهم كردن امكاناستفاده گسترده از انرژي برق براي توسعه اقتصادي ، اجتماعي و رفع محروميتها،افقهايجديدي را فراروي مسئولان صنعت قرار داد
از 1358 تا 1367
در اين سالها كه هشت سال آن مقارن با جنگ تحميليعراق عليه جمهوري اسلامي ايران بود . صنعت برق ايران خود را موظف مي ديد كه علاوهبر نگهداري و بهره برداري از تاسيسات موجود خود براي حمايت ازمردم و دفاع از پشتجبهه ، توسعه هاي لازم را نيز چه در امر توليدوانتقا ل وچه در جهت توزيع و خدمترساني به مشتركان انجام دهد . برق ر?³اني به روستاها كه تا پايان سال 1357در4237روستاهاي نزديك شهرها تحقق يافته بود به صورت يكي ازمحورهاي اساسي فعاليتهاي صنعتبرق درآمد به طوري كه درطي دوران جنگ تحميلي ، علي رغم همه دشواريها ، سالانه بهطور متوسط بيش از 1800 روستا برقدار گرديد و بدين ترتيب در انتهاي سال 1367تعدادروستاهاي برقدار كشور از 4327 روستا به 22541 روستا رسيده بود درسالهاي اوليهپس ازپيروزي انقلاب اسلامي و درطي دوران جنگ تحميلي ، با وجود همه مشكلات ناشي ازجنگ ، صنعت برق به رشد همه جانبه خود ادامه داد. نگاهي مقايسه اي به چند شاخص اصليمويداين مدعااست
مقايسه ارقام مهم عملكرد صنعت برق در وزات نيرواز پايان سال 1357 تا پايان 1367
شرح
1357
1367
رشد سالانه (%)
قدرت نصب شده (مگاوات(
7024
13681
6/9
توليد انرژي سالانه(ميليون كيلووات ساعت(
17368
43775
9/7
حداكثر بار (مگاوات(
3486
7762
8/3
تعداد مشترك (هزار(
3399
8828
10
فروش انرژي (ميليون كيلووات ساعت(
14145
36147
9/8
روستاي برقدار
4327
22541
17/9
از 1368 تا كنون
با پايان گرفتن جنگ تحميلي ،ابتداترميمخسارتهاوخرابيهاي دوران جنگ در كانون توجه مديران و مسئولان صنعت برق قرار گرفت . به عنوان مثال ، بررسيها نشان مي داد كه از قدرت نصب شده كشور ، معادل 2210 مگاواتدر اثر آسيبهاي جنگ از مدار خارج است . بااحتساب تاسيسات انتقال نيروو ساير تجهيزاتمي توان تصور كرد كه بازسازي ويرانه هاي بازمانده از جنگ چه كوشش و تلاش عظيمي راطلب مي كرده است . ترميم خسارتها كه از نيمه دوم سال 1367 آغاز شده بود با سه سالكار شبانه روزي به انجام رسيد و تا پايان سال 1370 واحد ها و تاسيسات آسيب ديدهمجددا" در مدار قرارگرفتند پس از خاتمه جنگ ، فعاليتهاي صنعت برق كه تا آن زمان ازدشواريهاي روز به روز جنگ تاثير منفي مي گرفت،سامانمندي بيشتري يافت وهمگا مبادوبرنامه اول ودوم توسعه اقتصادي،اجتماعي و فرهنگي جمهوري اسلامي ايران به پيشرفت
مقايسه ارقام مهم عملكرد صنعت برق در پايان سال 1376 كه نه سال از طولبرنامه هاي اول و دوم گذشته و دو سال به پايان برنامه دوم مانده بوده است با ارقاممربوط به ابتداي برنامه ، جهش صنعت برق را آشكارمي سازد
واضح است كه ارقام بالاو مقا يسه آنها تنها گوشه هاي كوچكي از صحنه وسيع يك تلاش همه جا نبه را نشان ميدهند و تحقق اين ارقام مستلزم به ثمر رسيدن كوششها و پشتيبانيهاي فراوانيبوده استكه متاسفانه اين گاه شمار مختصر، حوصله پرداختن به همه آنها را ندارد ، در اينجاتنها به بيان اين نكته اكتفا مي كنيم كه توجه به نيروي انساني به عنوان سرمايه اصليصنعت برق ، پس از پيروزي انقلا ب اسلامي و بويژه در دوران بازسازي بعد از جنگتحميلي از راه كارهاي اصلي صنعت بوده است
آموزش اين نيروها براي ارتقاء كيفيت وشكوفا ساختن استعداد هاي خدادادي آنها ، همچنين سازماندهي نيروها در جهتي كه هدفهايكمي و كيفي برنامه ها رابرآورده سازد و هيچ يك از هدفهاي صنعت برق،از تامين برقبراي مصرف كنندگان گرفته تا بهبود بخشيدن به كيفيت خدمات و جلب رضايت مشتركان ،كوشش در راه رسيدن به خود كفايي و ورود در بازارهاي بين المللي و رقابت جهاني تحتالشعاع ديگري قرار نگيرد ، همواره مورد توجه برنامه ريزان و مديران صنعت بوده است
درنتيجه اين كو ششها ، صنعت برق توانسته است با موفقيت بحرانهاي دوران جنگ و پساز جنگ را پشت سر بگذارد و از لحاظ بين المللي نيز در جايگاهي در خور قرار گيرد . به طوري كه بر اساس آمارهاي سازمان ملل متحد ، در سال1995ميلادي (1374شمسي) ايرانازنظرابعاد صنعت برق دربين كشورهاي خاورميانه و غرب آسيادرمقام نخست قرارگرفت ودرسطح جهاني نيز به مقام مقايسه بيست و يكم دست يافت
مقايسه ارقام مهم عملكرد صنعت برق در وزات نيرواز پايان سال 1367 تا پايان 1376
شرح
1357
1367
رشد سالانه (%)
قدرت نصب شده (مگاوات (
13681
23258
6/1
توليد انرژي سالانه(ميليون كيلووات ساعت (
43775
92310
8/6
حداكثر بار (مگاوات(
7762
17135
9/2
تعداد مشترك (هزار(
8828
13550
4/9
فروش انرژي (ميليون كيلووات ساعت(
36147
73880
8/3
روستاي برقدار
22451
37094
5/7
 
+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:50  توسط 66  | 

 

سيم‌پيچي دمپر از يك مدار اتصال كوتاه تشكيل شده كه درون كفشك قطب قرار مي‌گيرد. از اين مدار اتصال كوتاه شده در حالت عملكرد نرمال ماشين، هيچ جريان گردشي عبور نمي‌كند. زماني از دمپر جريان عبور مي كند كه خطاي سنكرونيزاسيون يا خطاي اتصال كوتاه يا عدم تقارن بار در ژنراتور پيش آيد. در زمان خطاي سنكرونيزاسيون(زماني كه سرعت واحد نسبت به سرعت سنكرون اختلاف داشته باشد)، خطوط ميدان مغناطيسي، سيم‌پيچ دمپر را قطع مي‌كند كه باعث عبور جريان و توليد گشتاور در آن مي‌شود. جهت جريان بگونه‌اي است كه در حالت كم بودن سرعت واحد، گشتاور شتاب دهنده و در حالت بيشتر بودن سرعت، گشتاور ترمزي در واحد ايجاد مي‌نمايد. به اين ترتيب به بازگشت واحد به سرعت سنكرون كمك مي‌كند .

جهت تعيين ابعاد ميله هاي دمپر، نيازمند تعيين مقادير زير هستيم:

- حداكثر جريان نامتقارن مولفه منفي (I2/In) در حالت عملكرد پيوسته

- حداكثر مقدار I22t در زمان وقوع خطا

سيم‌پيچ دمپر از چندين ميله مسي استوانه‌اي، روي سطح كفشك قطب و درون شيارهايي توزيع شده‌اند و در دو انتها بوسيله تسمه‌هاي مسيبه همديگر جوش خورده‌اند. ارتباط بين قفسهاي دمپر، توسط تسمه‌هاي مسي قابل انعطاف و يا از طريق بدنه قطب و روتور ريم، انجام مي‌شود (نوع بسته يا باز). نوع بسته و يا باز قفس دمپر با توجه به مقدار راكتانس زيرگذراي (Sub-Transient) درخواست شده از طرف خريدار تعيين مي‌شود.

تعداد ميله‌هاي دمپر به ازاي هر قطب، تابعي از تعداد شيار در قطب در فاز استاتور (تعداد شيارهايي بر روي استاتور كه در يك فاز آن به ازاي هر قطب وجود دارند) و همين طور راكتانس زيرگذرا مي‌ باشد.

اگر از سيم‌پيچ دمپر بعنوان راه‌انداز در حالت موتوري(موتور سنكرون) استفاده شود، طراحي متفاوتي بكار مي‌رود تا دمپرها بتوانند جريانهاي بيشتري را تحمل كنند.
+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:48  توسط 66  | 

 

براي مدت طولاني استفاده از مواد سراميكي به عنوان عايق در صنعت‌برق رايج بود ولي اشكالاتي كه بر اثر كاربرد اين مواد بوجود مي‌آمد محققان را بر آن داشت تا به فكر استفاده از موادي جايگزين برآيند. استفاده از عايق‌هاي پليمري يكي از انتخا‌ب‌هايي بودكه در اين راستا مطرح شد و با توسعه تكنولوژي پليمر و توليد پليمرهاي مهندسي با خواص مطلوب، توجه محققان بيشتر به اين سمت معطوف شد. استفاده از پليمر به عنوان عايق در صنعت‌برق نه تنها خواص الكتريكي مورد نياز را تامين مي‌كند بلكه نقاط ضعف سراميك را نيز برطرف مي‌كند.
در اين مقاله ضمن اشاره به معايب عايق‌هاي سراميكي كه در نتيجه سال‌ها استفاده از آنها درصنعت‌برق بدان پي‌برده شده است و طرح دلايل تمايل به جايگزيني آنها با عايق‌هاي پليمري در سال‌هاي اخير،‌نتايج امكان‌سنجي فني و اقتصادي صورت گرفته در خصوص جايگزيني بوشينگ‌هاي سراميكي ترانسفورماتورها با انواع پليمري آنها و تعيين و اولويت‌بندي جايگزين‌هاي مناسب براي اين كار با در نظر گرفتن شرايط كاربري و مسائل اقتصادي ارايه شده است.



يك فرآورده سراميكي، از گل كه مخلوطي از آب و خاك است ساخته شده، در هوا خشك و درحرارت سخت شده است.كلمه سراميك از كلمه يوناني Keramos كه خود ريشه سانسكريت دارد و به معني خاك رس پخته شده است، گرفته شده است. بنابراين چنانچه اين مفهوم از كلمه سراميك، مدنظر باشد مي‌‌توان معادل فارسي «رسينه» را براي آن پيشنهاد كرد.
عايق‌هاي چيني متداول‌ترين نوع عايق‌هاي الكتريكي هستند، چرا كه داراي مقاومت الكتريكي ونيز استحكام زيادي بوده و قيمت اوليه مناسبي دارند. به طور كلي اين مواد در فركانس‌هاي كم و در كليه ولتاژها (اعم از ولتاژ‌هاي پايين يا بالا) كاربرد دارند. براي مدتهاي طولاني، سراميك تنها ماده مورد استفاده براي كاربردهاي عايقي بوده است با اين حال اين ماده در عمل نارسايي‌هايي از جمله موارد زير را از خود نشان مي‌دهد:
- بسيار شكننده است
- اتصال قطعات فلزي به آن شكل است
- دقت ابعادي آن كم است كه اين امر باعث ايجاد مشكلات حادي در طراحي و شكل‌دهي قطعات سراميكي است.
بعد از سال 1945 و با ظهور مواد پليمري در بازارهاي تجاري،تمايل به استفاده از مواد پليمري براي ساخت عايق‌هاي الكتريكي افزايش يافت. علت اين امر توليد رزين اپوكسي با نام آرالديت بود كه باعث شد تا قطعات عايقي ارزان و كوچك با دقت ابعادي بالا وسهولت در فرآيند ساخت توليد شوند. به موازات ساخت پليمرهاي جديد، استفاده از انواع مختلف پليمر براي ساخت قطعات عايقي افزايش يافت به طوري كه در حال حاضر شركت‌هاي مختلفي در دنيا اقدام به ساخت بوشينگ و مقره‌هاي پليمري از انواع مختلف مي‌كنند.
البته در اينجا لازم به ذكر است كه عايق‌هاي سراميكي هنوز هم در مقايسه با عايق‌هاي پليمري مزيت‌هايي به شرح زير دارند:
1- از نظر قيمت ارزان‌تر از عايق‌هاي پليمري هستند.
2- روش توليد انبوه آن آسان است.
3- مواد اوليه مورد نياز جهت توليد عايق‌هاي سراميكي در داخل كشور به وفور يافت مي‌شود.
4- تجهيزات و ماشين‌آلات كارگاهي آن بسيار ارزان است.

شرح مقاله
گرچه عايق‌هاي سراميكي خواص الكتريكي مطلوبي دارند ولي نقاط ضعف آنها باعث شد تا عايق‌هاي ديگري جايگزين اين نوع عايق‌ها شوند. در ادامه به ذكر اين نقاط ضعف و مزاياي استفاده از عايق‌هاي پليمري ومقايسه بين اين دو نوع عايق پرداخته مي‌شود. همچنين نتايج حاصل از بررسي صورت گرفته جهت انتخاب بهترين نوع عايق پليمري از جنبه‌هاي فني و اقتصادي، جهت جايگزيني با بوشينگ‌هاي سراميكي ترانسفورماتورها ارايه خواهد شد.

معايب عايق‌هاي سراميكي
معايب مكانيكي
معايب مكانيكي عايق‌هاي سراميكي عبارتند از:
- پارگي عايق يا ستون عايق به علت نيروي قابل ملاحظه بيش از مقدار مجاز و قابل قبول. هنگامي كه نيروي وارد بر زنجير عايق از طرف هادي بطور قابل ملاحظه‌اي افزايش يابد، موجبات شكستگي زنجير عايق و انهدام آن را فراهم مي‌سازد.
- با توجه به اين كه عمدتاً عايق‌بندي در ايستگاه‌هاي توزيع و انتقال نيرو با عايق‌هاي سراميكي است و با توجه به تعداد زياد اين عايق‌ها در هر ايستگاه ونيز وزن زياد آنها، وزن ستون عايق‌ها افزايش مي‌يابد كه اين امر باعث افزايش حجم و وزن اسكلت فلزي و فونداسيون مربوطه مي‌شود.
- ضربه‌پذيري كم‌عايق. اين موضوع موجب مي‌شود كه در اثر كوچكترين ضربه- به جهت شكل خاص هندسي آن – توزيع تنش در همه نقاط عايق يكسان نباشد و با توجه به استحكام ناچيز سراميك در مقابل نيروهاي ديناميكي، موجب شكستن و يا ترك برداشتن عايق شود.
- با توجه به وزن بالاي ستون عايق‌هاي سراميكي، نصب آن بسيار مشكل است و نياز به جرثقيل دارد و به همين دليل زمان و هزينه مونتاژ و نصب آن بالا مي‌رود.
- با توجه به استحكام ناچيز عايق‌هاي سراميكي در موقع حمل و نقل، احتياط‌هاي لازم جهت نصب بايد بسيار وسيع و دقيق صورت گيرد تا ضربه‌اي به اين عايق‌ها وارد نشود. زيرا اين عايق‌ها ممكن است در اثر ضربه ترك بردارند و همان ترك رشد كرده، موجب ترك خوردگي كامل عايق شود.
- عايق‌هاي سراميكي داراي انعطاف‌پذيري‌ كمي هستند ولذا در مقابل نيروهاي افقي از جمله نيروي باد كه بر محور آن وارد مي‌شود داراي مقاومت كمي هستند و چون حالت انعطاف‌پذيري ندارند، در صورتي كه نيروي زيادي بر آنها وارد شود مي‌شكنند. با توجه به اين مطلب در مناطقي كه داراي طوفان‌هاي فصلي شديد هستند و يا زلزله‌خيز هستند امكان شكستن عايق‌ها وجود دارد.
- استحكام فشاري و چسبندگي عايق‌هاي سراميكي ناچيز است. به همين دليل گاهي گلويي مقره و يا آرماتور داخلي از بشقاب جدا مي‌شود كه اين امر نشان مي‌دهد استحكام فشاري و چسبندگي و فشردگي مواد و توزيع يكنواخت مواد در ساخت سراميك‌هاي با شكل هندسي ويژه امكان‌پذير نيست. البته گاهي اوقات با اصلاح قالب و قرارگيري درست آرماتور و فشردگي كامل مواد، اين مشكل تقريباً قابل حل است.

معايب حرارتي
در عايق‌هاي سراميكي، معايب حرارتي ذيل مشاهده مي‌شود:
- در ساختار لعابي كه روي عايق‌هاي سراميكي اعمال مي‌شود از چسب پلي‌وينيل استات و ديگر جسب‌هاي آلي استفاده مي‌شود. هنگامي كه اين لعاب در كوره قرار مي‌گيرد مواد فرار اين چسب‌ها با درجات فراريت مختلف در دماهاي مختلف و با سرعت‌هاي مختلف خارج مي‌شوند. به همين دليل در حين خروج اين مواد فرار، ترك‌هاي ريز كه با چشم براحتي قابل رويت نيستند در سطح عايق ايجاد مي‌شود كه اين امر بر روي خواص دي‌الكتريك عايق و تخليه جزيي و گاهاً جريان‌هاي سطحي و آلودگي سطحي تاثير بسزايي دارد. اين مشكل به هيچ شكلي قابل حل نيست.
- با توجه به اين كه دماي Tg اكثر چسب‌هاي آلي لعاب‌ها پايين است، لذا در دماهاي كمتر از صفر و يا مناطق سردسير ممكن است متناسب با نوع لعاب، ترك‌هاي ريز كه به مرور رشد مي‌كنند ايجاد شود كه اين ترك‌ها نيز مشكلاتي همچون بند بالا را بوجود مي‌آورند.
- تغييرات درجه حرارت محيط در طول سال و يا تغييرات درجه حرارت بين شب و روز در مناطق كويري و انقباض و انبساط عايق (با توجه به اين كه ضريب انبساط لعاب و بيسكويت زيرين لعاب يكسان نيست) موجب مي‌شود كه ابتدا ترك‌هاي متعدد در بدنه عايق مشاهده شود و گسترش تدريجي ترك‌ها بصورت طولي و عمقي موجب بروز تخليه جزيي مي‌شود. بروز تخليه جزيي در محل ترك‌ها و در سطح خارجي عايق، ترك‌ها را وسعت بخشيده، موجبات شكستگي عايق و برجستگي‌ها را فراهم ساخته و به قوس كامل منجر مي‌شود.

معايب الكتريكي
ايرادات الكتريكي كه در واقع به نوعي به استحكام و خواص مواد بكار رفته در لعاب و خاك چيني مربوط است عبارتند از:
- ايجاد ترك تحت تاثير جريان‌هاي ناشي از تخليه جوي و شدت ميدان قابل ملاحظه‌اي كه در قبال ولتاژهاي موجي تخليه جوي و بروز قوس از نوع قوس‌هاي برگشتي مشاهده مي‌شود. اين عارضه بطور عمده در ستون بوشينگ و يا زنجير مقره خطوط انتقال روي مي‌دهد كه البته اين ترك‌ها، به نوعي در آلودگي و جريان‌هاي سطحي تاثير بسزايي دارد.
- بروز تخليه جزيي در محل ترك‌هاي ظاهر شده در سطح خارجي عايق و گسترش تدريجي آنها. ادامه بروز تخليه جزيي موجب شكستگي تدريجي عايق وجدا شدن برجستگي‌هاي خارجي مي‌شود در اين صورت زنجير مقره تنها شامل گلويي خواهد بود. هرگونه ترك، مسير مناسب قوس جزيي را در سطح و يا در عمق مقره بين آرماتور داخلي و سطح خارجي يا هادي تحت ولتاژ بوجود مي‌آورد.

معايب خوردگي
يكي از ايرادات و مشكلات بزرگي كه در صنايع وجود دارد مشكل خوردگي است و اين ايراد به عنوان يكي از ايرادات مهم و اساسي درعايق‌هاي سراميكي نيز وجود دارد. خوردگي در سطح خارجي عايق سراميكي صنعتي به دو علت زير روي مي‌دهد:
• صدمه مكانيكي ناشي از ضربات مكانيكي و يا حرارت حاصل از تخليه جزيي در پي برقراري جريان سطحي. لازم به توضيح است كه بروز تخليه جزيي در سطح خارجي عايق و ايجاد خوردگي مكانيكي و ترك ناشي از حرارت طي مراحل زير صورت مي‌گيرد.:
- ايجاد حرارت موضعي در سطح خارجي عايق وبروز قوس‌هاي جزيي بطور چند ميلي‌متر. بروز اينگونه قوس‌ها موجب مي‌شود تا ترك و شيارهايي به عمق 1 تا 3 ميلي‌متر در سطح عايق ايجاد شود.
- با گذشت زمان و ادامه برقراري تخليه جزيي، جريان به تدريج به داخل عايق نفوذ مي‌كند.
- با قطع جريان و تخليه جزيي، لايه سطحي مجدداً رطوبت جذب كرده و با بروز قوس مجدد در شرايط مناسب اين پديده تكرار مي‌شود. بروز اين پديده به شرح فوق موجب انبساط و انقباض متوالي عايق گشته و ترك‌هاي مويي در سطح عايق ايجاد مي‌‌كند.
- با برقراري جريان سطحي و بروز قوس‌هاي موضعي ترك‌هاي ايجاد شده به تدريج به مناطق سرد گسترش مي‌يابند.
• خوردگي شيميايي. آلودگي صنعتي برحسب نوع خود مي‌تواند موجبات خوردگي در سطح عايق را فراهم سازد. به همين علت انتخاب نوع مناسب عايق همراه با حداقل لايه سطحي و شست‌وشوي مرتب از اهميت ويژه برخوردار است. هنگامي كه در آلودگي‌هايي كه در سطح عايق مي‌نشيند يون‌هايي مانند سديم، پتاسيم، ليتيم موجود باشند خوردگي شيميايي همزمان با برقراري جريان سطحي با سرعت قابل ملاحظه‌اي روي خواهد داد و هنگامي كه اين نوع خورندگي با تخليه جزيي همراه شود خورندگي به سرعت گسترش مي يابد.

معايب عايق‌هاي سراميكي از نظر آلودگي وشرايط محيطي
يكي از مهمترين ايراداتي كه بر عايق‌هاي سراميكي وارد است تاثير آلودگي‌هاي محيطي بر عملكرد اين نوع عايق‌ها است. زيرا در اثر آلودگي‌ها، فاكتورهاي اصلي عايق الكتريكي خدشه‌دار مي‌شود و تاثير بسزايي در خواص و ويژگي‌هاي عايقي اين مواد ايجاد مي‌كند. آلودگي‌هاي محيطي بر دو نوع است:
• آلودگي‌هاي طبيعي. آلودگي‌هاي محيط به صورت ذرات گرد و غبار، دوده و گازهاي شيميايي و تركيبات آنها بر سطح خارجي عايق رسوب مي‌كند و در طول زمان، لايه سطحي متشكل از ذرات با تركيبات مختلف را پديد مي‌آورد كه با گذشت زمان، اين لايه سطحي متشكل از ذرات در مجاورت رطوبت از هدايت ناچيزي برخوردار گشته و جريان تخليه را از طريق لايه و در سطح خارجي عايق بالغ بر چند ميلي‌آمپر برقرار مي‌سازد كه در صورت افزايش ضخامت لايه، جريان برقرار شده فزوني يافته و با تجاوز از مقدار مشخص، شرايط بروز قوس در سطح خارجي عايق را فراهم مي‌سازد. بدين ترتيب آلودگي‌هاي محيط و لايه سطحي ناشي از آن، ولتاژ دي‌الكتريك عايق را كاهش داده، بروز قوس در سطح خارجي را به ازاي ولتاژ اسمي سبب مي‌شود.
• آلودگي‌هاي صنعتي. اين نوع آلودگي در مناطق و نواحي صنعتي نظير كارخانجات شيميايي، رنگسازي، سيمان، ذوب فلزات و غيره مشاهده مي‌شود. در اين مراكز مواد شيميايي حاصل از كارخانجات صنعتي در فضا موجود بوده، در سطح عايق‌ها ظاهر مي‌شود. مقررات و پيش‌بيني‌هاي به عمل آمده به منظور كيفيت ايزولاسيون عايق‌ها و انتخاب مناسب آنها، متناسب با آلودگي‌هاي محيط، براي آلودگي‌هاي صنعتي و محيطي يكسان هستند. با اينهمه در مواردي كه ميزان آلودگي اعم از صنعتي ياطبيعي قابل ملاحظه باشد انجام بررسي‌ها و مطالعات دقيق به منظور انتخاب و تعيين نوع عايق مناسب صورت مي‌پذيرد.

مقاومت عايق‌‌هاي سراميكي در مقابل عوامل جوي و اشعه ماوراء بنفش
يكي از معايبي كه در مورد عايق‌هاي سراميكي وجود دارد آن است كه در مقابل نور، رطوبت، گازها و برخي مواد شيميايي ضعيف هستند. مثلاً‌در مقابل گازهاي فلوئور و كلر در مجاورت رطوبت كه توليد اسيدفلوريدريك و يا اسيد كلريدريك مي‌كند به شدت ضعيف هستند و خورده مي‌شوند. در مقابل اثرات مستقيم نور خورشيد و تشعشع ماوراء بنفش همراه با رطوبت و شرايط اكسيد‌كنندگي محيطي رنگ پريدگي،‌تخلخل، ترك خوردگي سطحي، سست‌شدن و شكنندگي ايجاد مي‌شود.
با توجه به موارد ذكر شده مي‌توان گفت كه اين عايق‌ها از دو نظر با اشكال اساسي روبرو هستند:
1- خواص فيزيكي و مكانيكي اين عايق‌ها ضعيف است.
2- خواص آلودگي اين عايق‌ها نامطلوب است

عايق‌هاي پليمري
بطور كلي دلايل اصلي كه موجب مي‌شود به جاي عايق‌هاي سراميكي از عايق‌هاي پليمري استفاده شود به شرح ذيل است:
1- خواص و ويژگي‌هاي مكانيكي عايق‌هاي سراميكي ضعيف است.
2- ميزان جذب رطوبت عايق‌هاي پليمري از عايق‌هاي سراميكي كمتر است.
3- ميزان جذب آلودگي و ايجاد جريان سطحي در عايق‌هاي سراميكي زيادتر است.
4- در ولتاژهاي بالا عايق‌هاي سراميكي مقاومت قوسي پاييني دارند.
5- ضريب دي‌الكتريك عايق‌هاي سراميكي كم است.
6- با توجه به اين كه عايق‌هاي چيني و يا شيشه‌اي به عنوان ايزولاسيون خارجي فاصله سطحي مناسبي ندارند به همين منظور جهت تامين فاصله سطحي كافي و كاهش ارتفاع عايق، از عايق‌هاي پليمري با اندازه ايده‌آل برجستگي‌ها استفاده مي‌شود.



مقايسه عايق‌هاي سراميكي وپليمري
• مقايسه از لحاظ فني: بطور خلاصه مي‌توان مزاياي عايق‌هاي پليمري را به صورت ذيل خلاصه كرد:
- مقاومت بالا در برابر انفجار بر اثر فشارهاي داخلي و يا عوامل خارجي همانند تخريب انساني.
- طول عمر بالاي 25 سال بدون افت رفتار عايقي
- عملكرد عالي در مناطق آلوده و عدم نياز به شست‌وشو
- مقاومت بالا نسبت به عوامل محيطي از قبيل اشعه UV، رطوبت و ...
- وزن كمتر (بين 10 تا 50 درصد وزن عايق‌هاي سراميكي) كه اين مساله باعث كاهش هزينه و ضايعات حمل و نقل مي‌شود.
- انعطاف‌پذيري كه سبب حذف ضايعات ناشي از شكستن عايق در مراحل توليد، حمل و نقل، نصب و بهره‌برداري مي‌شود.
- ايمني بالاتر در هنگام وقوع نقص الكتريكي
- مقاومت بالاتر نسبت به خرابكاري
- ايمني بيشتر در هنگام وقوع زلزله خصوصاً‌در عايق‌هاي مصرفي در ترانسفورماتورهاي قدرت
- عدم محدوديت در زواياي نصب
- قابليت دستيابي به فواصل خزشي بالا (به دليل خواص عايقي مطلوب) بدون افزايش قابل ملاحظه در وزن و ابعاد
- آب‌بندي موثرتر در محل اتصال عايق
- امكان افزايش فاصله سطحي در ارتفاع يكسان با عايق‌هاي سراميكي تا حدود 2 برابر، كه اين امر در مناطق با آلودگي بالا از اهميت بالايي برخوردار است.

• مقايسه از لحاظ اقتصادي: در مقايسه اقتصادي عايق‌هاي سراميكي با عايق‌هاي پليمري بايد به دو پارامتر توجه كرد:
1- هزينه اوليه عايق
2- هزينه عملياتي عايق

1- هزينه اوليه عايق: قيمت خريد عايق پليمري بيشتر از عايق سراميكي است كه ناشي از قيمت مواد اوليه مورد نياز است البته ميزان افزايش قيمت بر حسب نوع پليمر متغير است.
2- هزينه عملياتي عايق: يكي از موارد مهمي كه در بررسي فني و اقتصادي جايگزيني بايد مدنظر قرار گيرد مساله هزينه‌هاي عملياتي عايق‌ها است. هزينه‌هاي عملياتي عايق را مي‌توان به دو دسته كلي تقسيم كرد:
الف) هزينه‌هاي عملياتي قبل از نصب در محل بهره‌برداري
ب) هزينه‌هاي عملياتي بعد از نصب در محل بهره‌برداري

الف) هزينه‌هاي عملياتي قبل از نصب در محل بهره‌برداري: اين قسمت شامل كليه هزينه‌هاي قبل از نصب است. در ابتدا بايد هزينه‌هاي ساخت عايق را در نظر گرفت. عايق‌هاي سراميكي به دليل ساختارشان، در حين توليد ضايعات بيشتري را نسبت به عايق‌هاي پليمري ايجاد مي‌كنند (به عنوان مثال شكستن در كوره و تحت حرارت پخت) كه اين هزينه‌ها در انتها بر روي قيمت عايق تاثير مستقيم مي‌گذارند. همچنين عايق‌هاي سراميكي در حين حمل و نقل و نصب در محل مورد نظر دچار شكستگي مي‌شوند كه اين موضوع در مورد عايق‌هاي پليمري صادق نيست. به عبارت ديگر ضايعات عايق‌هاي سراميكي از ابتداي ساخت تا زمان نصب در محل بهره‌برداري بيشتر از عايق‌هاي پليمري است بنابراين هزينه بيشتري برمصرف‌كننده تحميل مي‌كند.
ضايعات عايق‌هاي سراميكي را مي‌توان به صورت زير عنوان كرد:
- در حين توليد عايق
- حمل از محل توليد به محل بهره‌برداري
- نصب عايق
- ضايعات ناشي از خرابكاري
- ضايعات ناشي از زلزله
طبق برآوردهاي انجام شده مجموع اين ضايعات به 10 تا 15 درصد بالغ مي‌شود. بديهي است هزينه ضايعات عايق‌ها تنها به جايگزيني آنها محدود نشده و وقفه‌هاي ايجاد شده در مراحل مختلف و نيز مشكلات حاصل از ناكارآمدي عايق تحت سرويس، هزينه‌هاي جانبي قابل ملاحظه‌اي را بر مصرف‌كنندگان تحميل مي‌كند.
ب) هزينه‌هاي عملياتي بعد از نصب در محل بهره‌برداري: اين هزينه‌ها شامل هزينه‌هاي شست‌وشوي عايق، هزينه‌هاي ناشي از شكسته‌شدن عايق و جايگزيني آن، هزينه‌هاي ناشي از ايجاد قوس الكتريكي (بر اثر آلودگي) و ... است.
عايق‌هاي سراميكي به دليل ساختارشان، احتياج به شست‌و شوي متناوب دارند. اين شستشو مخصوصاً در شرايط آب و هوايي با آلودگي بالا (مانند مناطق جنوبي) از اهميت خاصي برخوردار است. در صورت عدم توجه به اين موضوع، تشكيل قوس الكتريكي و صدمه ديدن عايق مي‌تواند هزينه‌هاي بيشتري را تحميل كند در حالي كه عايق‌هاي پليمري به دليل ويژگي‌هاي ساختاري‌شان احتياج كمتري به شست‌وشو دارند بنابراين هزينه شست‌وشوي آنها كمتر است. همچنين احتمال تشكيل قوس الكتريكي و صدمه‌ديدن عايق در اين حالت كمتر است.
با در نظر گرفتن ضايعات عايق‌هاي سراميكي كه رقمي در حدود 10 تا 15 درصد را تشكيل مي‌دهد اختلاف قيمت نهايي عايق‌هاي سراميكي و پليمري چندان تفاوتي با يكديگر نخواهد داشت. بعلاوه بررسي‌ها نشان مي‌دهد كه هزينه ساليانه شست‌وشوي عايق‌هاي سراميكي در مناطق آلوده در حدود 5 تا 10 درصد قيمت عايق است كه باجايگزيني اين عايق‌ها با عايق‌هاي پليمري اين هزينه‌ها حذف خواهند شد.
حذف عمليات شست‌وشوي دوره‌اي عايق‌ها در مناطق آلوده، از ديگر مزاياي اقتصادي عايق‌هاي پليمري است. در خصوص شبكه توزيع،‌ با توجه به پراكندگي و گستردگي مناطق نصب و تعداد اين عايق‌ها در مقايسه با شبكه فوق‌توزيع و قدرت، اين مزيت از اهميت بالاتري برخوردار خواهد بود. در مناطقي همچون بندرعباس، چابهار و بخش‌هايي از استان خوزستان، سيكل شست‌شو در اكثر ماههاي سال در دوره‌هاي 20 تا 25 روزه انجام مي‌گيرد كه در صورت استفاده از عايق‌هاي پليمري نياز به اين عمليات كمتر خواهد شد.
بنابراين بطور خلاصه مي‌توان گفت كه استفاده از عايق‌هاي پليمري علاوه بر كاهش هزينه‌، افزايش كارايي خطوط انتقال نيرو و كاهش صدمات ناشي از كاركرد نامناسب عايق‌هاي سراميكي را به دنبال خواهد داشت.

روش تحقيق
در اين تحقيق جايگزيني بوشينگ‌هاي سراميكي ترانسفورماتور با انواع پليمري آنها مورد بررسي قرار گرفته است. براي اين كار ابتدا شرايط كاربري اين عايق‌ها تعيين شد و سپس با بررسي رزين‌ها و الاستومرهاي مختلف ومقايسه خواص فيزيكي، مكانيكي و ... آنها با شرايط كاربري عايق‌هاي سراميكي، تعدادي از اين پليمرها انتخاب و درنهايت فرمولاسيون‌هاي مناسب براي ساخت عايق‌هاي پليمري پيشنهاد شد. انتخاب اين فرمولاسيون‌ها به صورتي انجام شده كه خواص كاربري عايق‌هاي ساخته شده با كامپاند پليمري حداقل برابر با خواص كاربري عايق سراميكي باشد (كه البته در اكثر موارد خواص كاربري عايق‌هاي پليمري بالاتر از عايق سراميكي است).
مراحل انجام اين تحقيق را مي‌توان به صورت زير بيان كرد:
1- بررسي عايق‌هاي سراميكي و تعيين شرايط كاربري آنها (نظير خواص مكانيكي، الكتريكي، شيميايي و ...)
2- استفاده از شرايط كاربري تعيين شده به عنوان مرجعي در طراحي عايق‌هاي پليمري
3- بررسي پليمرهاي مختلف و مقايسه خواص آنها با شرايط كاربري تعيين شده و حذف مواردي كه قابليت ارايه شرايط كاربري مورد نظر را نداشتند. از اين ميان تعدادي از پليمرها نيز به دليل مسائل فني و اقتصادي حذف شدند (نظير كمياب بودن و يا خاص بودن پليمر مورد نظر).
4- انتخاب نهايي تعدادي از پليمرها و ارايه فرمولاسيون اوليه براي هر يك از آنها كه بر مبناي اين فرمولاسيون‌ها، مطالعات اوليه براي برآورد قيمت عايق نيز انجام شد. در انتخاب پليمرها، هدف تعيين انواعي از پليمرها بوده كه شرايط كاربري آنها حداقل برابر شرايط كاربري سراميك باشد تا بتوان از آن در جايگزين كردن بجاي عايق‌هاي سراميكي استفاده كرد.
با توجه به مطالعات انجام شده رزين‌هايي كه مي‌توان از آنها براي ساخت عايق‌ پليمري استفاده كرد عبارتند از:

1- رزين آكريليك:
نام تجاري معروف اين رزين، پلكسي گلاس،لاكيت و آكريليت است.
- مزايا: دامنه وسيع رنگهاي آنها، شفافيت مطلوب، به آهستگي مي‌سوزند و در نتيجه سوختن دود كمي ايجاد مي‌شود يا اين كه اصلاً دودي آزاد نمي‌شود، مقاومت عالي آنها در برابر شرايط جوي و اشعه ماوراي بنفش، سهولت فرآوري، خواص الكتريكي عالي، صلبيت با استحكام ضربه‌اي خوب، صيقلي بودن خوب، پايداري ابعادي عالي و انقباض كم در قالب‌گيري، افزايش سختي دوجهتي براثر فرم‌دادن كششي.
- معايب: مقاومت ضعيف در برابر حلال‌ها، امكان ترك خوردن بر اثر تنش، قابليت احتراق، محدوديت استفاده مداوم آنها در دماي بالا (0C93)، غيرقابل ارتجاع بودن.
آكريليك‌ها بصورت كوپليمرهاي مختلفي وجود دارند كه عبارتند از:
- كوپليمر آكريليك- استايرن- آكريلونيتريل (ASA)
- كوپليمر آكريلونيتريل- بوتادين- استايرن (ABS)
- كوپليمر آكريلونيتريل- پلي‌اتيلن كلردار- استايرن (ACS)

2- رزين اپوكسي
- مزايا: محدوده وسيع شرايط تثبيت از دماي اتاق تا 350 درجه فارنهايت، عدم تشكيل تركيبات فرار در طي تثبيت، چسبندگي عالي، قابليت تشكيل اتصال عرضي با تركيبات ديگر، مناسب براي همه روش‌هاي فرآوري گرماسخت‌ها.
- معايب: پايداري كم در برابر اكسيد شدن، حساس بودن بعضي از اين تركيبات در برابر رطوبت، پايداري حرارتي تا
450-350 درجه فارنهايت، گران بودن بسياري از انواع آنها.

3- فلوئورو پلاستيك‌ها (رزين پلي‌تترافلوتورو اتيلن (PTEE)
- مزايا: عدم آتشگيري، مقاومت خوب در برابر حلال‌ها ومواد شيميايي، مقاومت خوب در مقابل عوامل جوي، ضريب اصطكاك پايين، امكان بكارگيري در محدوده وسيعي از دماها، خواص الكتريكي بسيار خوب.
- معايب: عدم امكان استفاده از روش‌هاي معمولي در فرآيند آن، سمي بودن محصولات ناشي از تخريب حرارتي، داشتن خزش، نفوذ‌پذيري، نياز به دماي بالا هنگام فرايند، استحكام اندك، دانسته زياد، قيمت نسبتاً بالا.

4- رزين‌هاي فنوليك
- مزايا: قيمت نسبتاً كم، مناسب بودن براي استفاده تا دماي 250 درجه سانتيگراد، مقاومت عالي در مقابل حلال، سختي مناسب، تراكم‌‌پذيري خوب، استحكام زياد، قابليت خاموش‌شوندگي خودبخود، ويژگي‌هاي الكتريكي عالي.
- معايب: احتياج به پركننده براي قالب‌گيري، مقاومت كم در مقابل بازها و اكسيدكننده‌ها، آزاد شدن مواد فرار طي تثبيت (يك پليمر تراكمي)، تيره بودن رنگ (به دليل بدرنگ شدن در نتيجه اكسيداسيون).


5- رزين ‌پلي‌كربنات
- مزايا: ضربه‌پذيري بسيار خوب، مقاومت بسيار خوب در مقابل خزش، دارا بودن درجات متنوعي از شفافيت، قابليت كاربرد مداوم تادماي بيش از 120 درجه سانتيگراد، پايداري ابعادي بسيار خوب.
- معايب: عدم قابليت فرايند در دماي بالا، مقاومت ضعيف در مقابل قلياها، آسيب‌پذيري در مقابل حلال‌ها، نياز به تثبيت‌كننده ماوراي بنفش.

6- رزين‌ سيليكوني
الاستومرهايي كه مي‌توان از آنها براي ساخت عايق‌هاي پليمري استفاده كرد عبارتند از:

1- EPDM
- مزايا: مقاومت عالي در برابر گرما، اُزن و نور خورشيد، انعطاف‌پذيري خيلي خوب در دماهاي پايين، مقاومت خوب در برابر بازها، اسيدها و حلال‌هاي اكسيژن‌دار، مقاومت فوق‌العاده در برابر آب و بخار آب، پايداري عالي رنگ.
- معايب: مقاومت ضعيف در برابر روغن، بنزين و حلال‌هاي هيدروكربني، چسبندگي ضعيف به الياف وفلزات

2- سيليكون
- مزايا: مقاومت برجسته در برابر گرماي زياد، انعطاف پذيري عالي در دماهاي پايين، مانايي فشاري كم، عايق‌كنندگي الكتريكي خيلي خوب، مقاومت عالي در برابر شرايط جوي، ازن، نور خورشيد و اكسايش، پايداري و حفظ رنگ فوق‌العاده.
- معايب: مقاومت ضعيف در برابر سايش، پارگي و رشد بريدگي، استحكام كششي كم، مقاومت نامطلوب و پايين در برابر روغن، بنزين و حلال‌ها، مقاومت ضعيف در برابر بازها و اسيدها.

3- هيپالون
- مزايا: تاخيراندازي خوب در برابر اشتعال، مقاومت سايشي خوب، مقاومت فوق‌العاده در برابر شرايط جوي، ازن، نور خورشيد و اكسايش، مقاومت عالي در برابر بازها و اسيدها، پايداري و حفظ رنگ خيلي خوب، مقاومت متوسط در برابر روغن و بنزين.
- معايب: مقاومت ضعيف تا متوسط در برابر حلال‌هاي آروماتيك، انعطاف‌پذيري محدود در دماهاي پايين، جهندگي و مانايي فشاري متوسط.
درادامه الويت‌بندي پليمرهاي انتخابي بر اساس مزيت‌هاي فني و اقتصادي آنها ارايه شده است.

4- انتخاب عايق پليمري مناسب
با مقايسه شرايط كاربري مورد نظر براي اين عايق‌ها با مشخصات پليمرهاي پيشنهادي در بند قبل و نيز با در نظر گرفتن مسائل اقتصادي، مي‌توان انتخاب مناسبترين پليمر براي اين كاربرد را مطابق جدول 1 اولويت‌بندي كرد:

نتيجه‌گيري
استفاده از عايق‌هاي پليمري به جاي عايق‌هاي سراميكي گرچه هزينه‌هاي اوليه بيشتري را بر مصرف‌كننده تحميل مي‌كند ولي از آنجايي كه هزينه‌هاي عملياتي عايق‌هاي پليمري بسيار كمتر از عايق‌هاي سراميكي است در مجموع هزينه استفاده از عايق‌هاي پليمري را نسبت به عايق‌هاي سراميكي كاهش مي‌دهد. همچنين بايد توجه داشت كه استفاده از عايق‌هاي پليمري كاهش خطا را در شبكه‌هاي توزيع و انتقال به همراه خواهد داشت كه اين خود باعث كاهش بسيار در هزينه‌هاي مصرف‌كننده خواهد شد. در صورت جايگزيني بوشينگ‌هاي سراميكي ترانسفورماتورها با نوع پليمري، مناسبترين نوع پليمرها به ترتيب عبارتند از: پليمرهاي اپوكسي، لاستيك‌ سيليكوني، هيپالون، EPDM-NR، پلي كربنات، فلوئور كربن، اكريليك، فنوليك و سيليكون رزين.

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:46  توسط 66  | 

 

نوسانات گالوپينگ يا نوسانات جهشي هاديها در اثر وزش باد يا ريزش ناگهاني يخ و برف از روي هاديها يا هر دو عامل بوجود مي آيد. اين پديده در برخي موارد ممكن است  منجر به وقوع اتصال كوتاه بين فاز با سيم محافظ يا فاز با فاز در جايگذاري عمودي هاديها گردد و در نتيجه باعث از دست رفتن شبكه مي گردد. براي جامعه امروزي كه مجهز به سيستم هاي اطلاعاتي خبره مي باشد يك قطع لحظه اي قدرت نيز حتي مي تواند براي مختل كردن فعاليت ها كافي باشد.

دركشور ژاپن براي مقابله با اين پديده روشهايي بكار گرفته شده است كه در زير به دو مورد آن اشاره مي گردد.



 · فعاليت شركت برق توكيو :

در منطقهKanto  در ژاپن پديده گالوپينگ در هر زمستان چند بار بيشتر اتفاق نمي افتد اما همين هم باعث وارد آمدن خساراتي به برجهاي انتقال و سيستم برق در منطقه وسيعي ميگردد.
از طرف ديگر چون در خطوط واقعي شانس و امكان كمي براي مشاهده پديده گالوپينگ وجود دارد، منطقه  achika در استان ياماگاتا در ژاپن كه داراي شرايط وزش باد شديدي در طول سال مي باشد انتخاب گرديده و يك خط انتقال آزمايشي 500 كيلو ولت در سال 1994 در اين منطقه براي آزمايش ساخته شد. با استفاده از خط آزمايشي مذكور امكان مشاهده پديده گالوپينگ در خط آزمايشي و بررسي دقت شبيه سازي ها وهمچنين موثر بودن روشهاي مقابله با پديده بوجود آمده است. 
قبل از شروع و مشاهده آزمايشها بر روي خط آزمايشي، با استفاده از تونل باد شكل تجمع و انباشتگي برفها روي هاديها كه باعث ايجاد پديده گالوپينگ با دامنه بزرگ ميگردد بررسي و انتخاب مي گردد، سپس مدل و  نوع تجمع و انباشتگي تعيين مي گردد و به روش مصنوعي بر روي هاديهاي خط آزمايش مي گردد.

براي مدلهاي انباشتگي از نوع مثلثي ويا هلالي و با استفاده از بررسي هاي آزمايش همان نتايج ملاحظه گرديد كه از مطالعات تئوريكي مورد نظر بوده است.

همچنين در پديده گالوپينگ براي اينكه بتوان بررسي نمود كه آيا باد در شرايط خوبي براي آزمايش روشهاي مقابله با پديده است يا خير، امكان مشاهده اطلاعات مربوط به  باد مانند سرعت، جهت،شدت و مغشوش بودن وجود دارد.

تا كنون با اعمال سيستم وزني خارج از مركز و يا فاصله دهنده هاي شل براي هاديها، توانسته اند در چند مورد پديده گالوپينگ را ايجاد و مشاهده نمايند. نتايج بررسي ها نشان داده است كه روشهاي مقابله اعمال شده مؤثر بوده و توانسته اند از پيدايش پديده گالوپينگ جلوگيري نمايند.

·                       فعاليت شركت برق هوكايدو

شركت برق هوكايدو در حال  بررسي و مطالعه پديده  گالوپينگ جهت روشن ساختن مكانيزم آن و طراحي تجهيزاتي براي جلوگيري از اين پديده مي باشند.

دستاوردها
    1-       طراحي و ساخت يك جداساز هادي فازها از نوع غيرسراميكي : اين جداساز جديد از مواد غيرسراميكي ساخته شده است و وزن سبكي دارد و مانع از ايجاد اتصال كوتاه بين هاديهاي خطوط انتقال مي گردد.

    2-                بررسي پديده گالوپينگ در حالت هاي مختلف سيم كشي

آزمايش بر روي خطوط انتقال با دو هادي (باندل دوتايي) در حالت هاي مختلف سيم كشي انجام گرديد تا اختلاف پديده گالوپينگ در اين حالت ها مشخص گردد. در اين آزمايشها مشخص گرديد كه خطوط عمودي (Vertical Lines) تأثير به سزايي در جلوگيري از پديده گالوپينگ دارند ولي قابليت هاي كاري و نگهداري آن به عنوان مشكلاتي كه بايد حل گردند باقي مانده است.

برنامه ها
    1-       استفاده از يك سيستم شبيه ساز : سيستم شبيه سازي كه از روش المان محدود استفاده مي كند مي تواند مدلهاي مختلفي از خطوط انتقال را شبيه سازي نمايد. شركت هوكايدو با استفاده از اين سيستم مطالعات لازم را جهت بهبود قابليت اطمينان عملكرد جداسازها كه ممكن است به عنوان راه حل مسأله گالوپينگ باشد ادامه داد.

    2-       مطالعه بر روي خطوط نصب شده : براي اثبات تجهيزاتي كه بدون استفاده از جداساز فازها مانع از پديده گالوپينگ مي شوند، اين شركت علاوه بر انجام آزمايش بر روي روشهاي مختلف سيم كشي جهت جلوگيري از گالوپينگ مي خواهد آزمايشاتي را نيز بر روي روشهاي پشتيباني و نگهداري هاديهاي خطوط انجام دهد تا مؤثرترين روش جلوگيري از پديده گالوپينگ را بيابد.

 

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:45  توسط 66  | 

 

امروزه در صنعت، ماشينهاي متفاوت و با سرعت هاي مختلف مورد استفاده قرار مي گيرد كه موارد قابل ذكر عبارتند از : ماشين برش فلزات ، چرثقيل الكتريكي ، ماشينهاي مربوط به حمل ونقل وانواع مختلف وسايل چاپ ، معدن ذغال سنگ و صنايع ديگر .براي مثال چرخاننده الكتريكي در ماشين برش فلزات ، سرعت سيستم مي بايد مطابق با نوع كار ، فلز و كيفيت نوع برش واندازه قطعه مورد نظر ، قابل تنظيم باشد . در كليه ماشين آلات ذكر شده ، چرخاننده بايد مجهز به كنترل سرعت باشد تا بتواند كميت توليد زياد ، شرايط كار مطلوب و كيفيت محصول خوب باشد . توسط كنترل سرعت مي توان سرعت چرخاننده را به ميزان مورد نياز جهت انجام مراحل كار تغيير داد . مفهوم كنترل سرعت يا تنظيم نبا يد شامل تغيير طبيعي در هنگام اخذ بار شود . تغيير سرعت مورد نياز در روي موتور چرخاننده و يا عنصر مرتبط به موتور چرخاننده انجام مي گيرد ، كه ممكن است اين عمل با دست توسط اپراتور و يا به طور اتوماتيك توسط وسايل كنترل انجام گيرد . امروزه تنظيم سرعت توسط مدار الكتريكي توسعه يافته و از نظر اقتصادي و نتايج حاصله بر كنترل مكانيكي ارجحيت دارد .موتورهاي آسنكرون سه فاز به خاطر امتيازات چشمگيرشان در صنايع كاربرد متنوعي دارند . از آن جمله در سيستمهاي محركه اي كه نياز به تغيير وتنظيم دور دارند بيشتر وبيشتر بكار گرفته مي شوند .



كنترل سرعت موتورآسنكرون با اعمال مقاومت در مدار رتور (تغييرات لغزش)


 


سرعت موتور اندوكسيوني را مي توان با قرار دادن مقاومت در مدار رتور كنترل نمود نرمي كنترل سرعت بستگي به تعداد مراحل مقاومت مورد استفاده دارد كنترل در جهت كاهشي از مقدار مبنا مي باشد .


به عنوان مقاومت متغيير مي توان از رئوستاي معمولي پتانسيومتر يا مقسم ولتاژ استفاده نمود اما امروزه ترجيحاً از مقاومت هاي الكترونيكي استفاده مي شود . با گذاشتن يك مقاومت اضافي در مدار رتور ماشين ، شكل منحني گشتاور- سرعت آن را تغيير داد . منحني هاي مشخصه گشتاور – سرعت حاصل شكل زير نشان داده شده است.


          اگر منحني گشتاور- سرعت بار به صورت نشان داده شده باشد تغيير مقاومت رتور باعث تغيير سرعت كار موتور مي شود . ولي گذاشتن مقاومت اضافي در مدار رتور يك موتور القايي بازده ماشين را به شدت كم مي كند . به خاطر مساله كاهش بازده اين روش كنترل سرعت تنها براي فواصل زماني كوتاه به كار مي رود .  جهت استفاده كامل از موتور ، تغيير سرعت مي بايددر كوپل ثابت انجام گيرد رنج كنترل ثابت ثابت نبوده و بستگي به مقدار بار دارد . با كاهش سرعت به طور قابل ملاحظه اي مشخصه ،سختي خود را از دست مي دهد حد كنترل سرعت 2:1 تا 3:1 مي باشد . مي بايد متذكر شد كه كنترل سرعت در اين روش مستلزم افت انرژي است افت ها در مدار رتور مستقيماً متناسب با لغزش است يعني :                               P1s=2.


كنترل سرعت موتور القايي با تغيير قطب :


 


اين روش برا ي موتورهاي رتور قفسي مناسب است ، زيرا در ماشين هاي رتور سيم پيچي كه براي تعداد قطب معيني سيم پيچي شده اند ، مشكلات اضافي پديد خواهد آورد.


سرعت سنكرون (سرعت زاويه اي ) يك موتور اندوكسيوني تابعي از فركانس منبع f  و تعداد جفت قطب ها p  سيم پيچي استاتور مي باشد .


                                                                               wO=


يا بر حسب r.p.m   خواهد بود :


                                                                                 no=


 


مشاهده مي گردد كه سرعت ممكن است با تغيير جفت قطب هاي سيم پيچي استاتور تغيير كند . در تغيير قطب هاي موتور سيم پيچي هر فاز متناوباً به دو قسمت مساوي تقسيم مي گردد و با كليدي مي توان سيم پيچ ها را سري يا موازي كرد كه تعداد جفت قطب ها نصف شده و در نتيجه سرعت 2 برابر سرعت سنكرون مي شود . اما در اين حالت نمي توان تغييرات پيوسته در سرعت ايجاد كرد .


با به كار گيري تنها يك سيم پيچ مي توان تعداد زوج قطب مختلف را تحقق بخشيد . اين روش اقتصادي تر بوده ، اما قسمتي از سيم پيچ زير فشار حرارتي بيشتري قرار مي گيرد     ( زيرا دائم زير ولتاژ خواهد بود ) .


اتصال دالاندر :


اتصال دالاندر يا سيم پيچ توزيع شده در استاتور ، حالت خاصي از كنترل دور موتور القايي با تغيير تعداد قطب هاي سيم بندي است كه در آن سيم پيچي هر فاز استاتور به دو نيم سيم پيچ تقسيم مي شود . در اثر تغيير اتصال نيم سيم پيچ هاي هر فاز از اتصال سري به موازي تعداد قطب ها نصف و سرعت دو برابر مي شود . به اين ترتيب فقط به كمك يك سيم پيچي مي توان دو سرعت مختلف را بدست آورد و در هر دو حالت تمام سيم پيچ ها وتمام شيارها فعال بوده و نسبت به موتور با سيم پيچ هاي مجزا از ظرفيت بيشتري برخوردار است . دو حالت اتصال موتور القايي نشان داده شده در شكل  مثلث – ستاره دوبل  ناميده مي شوند .


 


 


 


در اتصال سري دو نيم سيم پيچ ، اتصال موتور به صورت مثلث و در اتصال موازي دو نيم سيم پيچ ها ، اتصال موتور به صورت ستاره است كه باعث مي شود با دو برابر شدن سرعت ، قدرت موتور نيز تقريباً 1/5  برابر شود و گشتاور تقريباً ثابت باقي بماند . بنابراين از اتصال دالاندر براي محركهاي با گشتاور ثابت استفاده مي كنند .


تغيير سرعت از طريق تغيير قطبها به سه صورت زير انجام مي گيرد :


1- تغيير سرعت تحت گشتاور ثابت


 براي سرعت پايين اتصال مثلث بوده و براي سرعت بالا اتصال بصورت ستاره دوبل است . قدرت تحت سرعت بالا نسبت به قدرت تحت سرعت پايين افزايش يافته است ، افزايش سرعت با افزايش قدرت همراه بوده پس گشتاور ثابت است.


 


                                         


 


2- تغيير سرعت تحت قدرت ثابت


در هر دو اتصال سرعت زياد وسرعت كم توان خروجي موتور تقريباً ثابت است.


                                                 


 


3- تغيير سرعت تحت گشتاور و قدرت متغيير


گشتاور موتور مانند بارهاي پنكه اي با تغيير سرعت تغيير مي كند .


                                                 


                                


كنترل سرعت با تغيير قطب بر حسب فركانس منبع و تعداد جفت قطب ها سرعت ثابتي مي دهد . براي مثال براي موتور هاي 4 سرعته و با فركانس 50 هرتز سرعت هاي زير وجود دارد .


(1500/100/750/500 )   (3000/1500/750/500 )              


 


( 3000/1500/1000/500 )   ( 1000/750/500/375 )              


 


از سرعت هائي كه در بالا ذكر شد ديده مي شود رنج كنترل سرعت از 6:1  تا 8:1   است و افزايش اين رنج نيز غير عملي است . براي سرعت 375 r.p.m   لازم است موتوري با اندازه خيلي بزرگ طراحي شود .


كنترل سرعت با تغيير فركانس خط


اگر فركانس الكتريكي ولتاژ اعمال شده به استاتور يك موتور القايي تغيير كند ، آهنگ چرخش ميدانهاي مغناطيسي آن nsync    نيز متناسب با فركانس مي كند ، و نقطه بي باري منحني مشخصه گشتاور – سرعت نيز به همراه آن تغيير مي كند . سرعت سنكرون موتور در شرايط نامي را سرعت پايه مي نامند . با استفاده از فركانس متغيير مي توان سرعت موتور را در بالاتر يا پايين تر از سرعت پايه كنترل كرد . با اين كنترل مي توان سرعت موتور را در گستره اي از حدود 5 درصد سرعت پايه تا دو برابر سرعت پايه كنترل كرد. ولي اين نكته مهم است كه محدوديت هاي ولتاژ و گشتاور خاصي با فركانس در نظر گرفته شود ، تا عملكردي مطمئن به دست آيد . وقتي موتور با سرعتي پايين تر از سرعت پايه كار مي كند ، بايد ولتاژ پايانه اي اعمال شده به استاتور براي داشتن عملكرد مناسب كاهش يابد ولتاژ پايا نه اي اعمال شده به استاتور بايد با كاهش فركانس استاتور به طور خطي كم شود . اين فرايند را تنزل مي نامند اگر اين كار انجام نشود فولاد هسته موتور القايي اشباع شده ، جريانهاي مغناطيس شديدي در ماشين جريان مي يابد .


براي اينكه اين جريانهاي مغناطيس شديد به وجود نيايد، در مواردي كه فركانس از فركانس نامي موتور كمتر مي شود معمولاً ولتاژ استاتور را متناسب با فركانس كم مي كنند. هر گاه ولتاژ اعمال شده به يك موتور القايي در فركانسهاي زير سرعت پايه به طور خطي تغيير يابد ، شار موتور تقريبا ثابت مي ماند . بناباين گشتاور ماكزيممي كه موتور مي تواند تأمين كند نسبتاً بالا مي ماند . ولي ماكزيمم توان مجاز موتور بايد با كاهش فركانس به طور خطي كم شود تا از گرم شدن مدار استاتور جلوگيري شود . توان داده شده به موتور القايي سه فاز عبارت است از :


                                                                  


 


 


اگر ولتاژ VL  كم شود  ، توان ماكزيمم نيز بايد كم شود ، و گر نه جريان زيادي از موتور مي گذرد كه ميتواند باعث افزايش شديد گرماي موتور شود .


                                                             منحني مشخصه گشتاور –سرعت براي تمام فركانسها      


كنترل سرعت با تغيير ولتاژ خط


گشتاوري كه يك موتور القايي توليد مي كند با مربع ولتاژ اعمال شده به آن متناسب است. اگر مشخصات گشتاور- سرعت مطابق شكل زير باشد ، با تغيير ولتاژ خط مي توان سرعت موتور را در گستره محدودي كنترل كرد . اين روش كنترل سرعت گاهي اوقات در موتورهاي كوچك كرداننده پنكه ها به كار مي رود . اين تغيير ولتاژ پايانه استاتور مي تواند توسط اتو ترانسفورماتور با خروجي متغيير انجام گيرد . يكي ديگر از روشهاي تغيير ولتاژ استفاده از كنترل كننده هاي حالت جامد يا الكترونيكي است . اتو ترانسفورماتور به ماشين ولتاژ سينوسي اعمال مي كند ، اما كنترل كننده هاي حالت جامد ولتاژ غير سينوسي براي موتور فراهم مي نمايند .


كنترل سرعت توسط تغيير فركانس لغزش


در اين روش سرعت يك موتور القايي با تزريق كردن ولتاژي به مدار رتور تحت كنترل در مي آيد البته لازم است فركانس ولتاژ اعمال شده با فركانس لغزش يكسان باشد . وقتي ولتاژي اعمال مي كنيم كه در فاز مخالف نسبت به نيروي محركه الكتريكي رتور القا شده قرار دارد ، مقاومت رتور را افزايش مي دهد ، در صورتي كه وقتي ولتاژي اعمال مي كنيم كه هم فاز با نيروي محركه الكتريكي رتور القا شده مي باشد مقاومت آنرا كاهش مي دهد ( بطور متعادل ) لذا به وسيله تغيير دادن مقاومت رتور ، مي توان سرعت را كنترل كرد . چنين روشي از نوع كنترل سرعت را سيستم كرامر (Kramer)   مي نامند . كه در مورد موتورهاي بزرگ 5000 قوه اسبي يا بالاتر ار آن بكار مي رود.


 


مبدل فركانسي وارد – لئونارد  (ward – Leonard ) 


 شكل زير نشان دهنده مبدل فركانس وارد – لئونارد است مبدل فركانسي واقعي در قسمت سمت راست شكل ملاحظه مي شود ( رتور سيم پيچي ) . دو ماشين آسنكرون رتور قفسي ساير اجزاء تشكيل دهنده اين مدارند . بدين وسيله موازنه مطلوبي براي انرژي ماشين ها و شبكه موجود خواهد بود. امتياز اين مدار تغيير دوري پيوسته در محدوده وسيعي است .


              


 


                             


ماشيني كه خود مبدل فركانسي است ( موتور شراگ - ريشتر  (Schrage - richter)يا شربيوس (scherbius )  )


 


اين موتور در سال1912 توسط شراگ و ريشتر توسعه يافته و نام آنان را به خود گرفته است .اين موتور با تغذيه رتوري و نوع شنت است كه جاروبك متغيير كموتاتور سه فاز القايي است كه براي كنترل سرعت و هم بهبود ضريب قدرت قابليت تنظيم دارد .


در حقيقت اين موتور القايي حلقه هاي لغزان قابل تنظيم دارد . در اين موتور سه سيم پيچي وجود دارد دو تا از سيم پيچها در روتور و سومي در استاتور قرار گرفته اند مانند شكل زير


                                              


وضعيت سه سيم پيچي به شرح زير است :


1- سيم پيچ تحريك : اين سيم پيچ در قسمت پايين شيارهاي رتور قرار گرفته است و از طريق حلقه هاي لغزان و جاروبك ها با فركانس شبكه تغذيه مي شود اين سيم پيچ ها شار كاري در ماشين توليد مي كند .


2- سيم پيچي هدايت : اين سيم پيچ غالباً بنام سيم پيچ جبرانگر يا سيم پيچ سوم خوانده مي شود اين سيم پيچ نيز در بالاي روتور جا داده مي شود و مشابه سيم بندي آرميچرهاي ماشين هاي dc  به كموتاتور متصل مي شود .


3- سيم پيچي استاتور : اين سيم پيچي در شيارهاي استاتور قرار مي گيرد ولي انتهاي سيم پيچي هر فاز به يك جفت زغال وصل مي شود كه بر روي كموتاتور قرار داده مي شوند اين ذغالها بر روي دو قطعه مجزاي نگهدارنده جاروبك قرار گرفته اند كه براي چرخش در دو جهت مخالف هم طراحي شده اند .


 


مدار كاسكاد  :


شكل زير مدار كاسكاد يك موتور آسنكرون روتور سيم پيچي و يك موتور جريان دائم تحريك مستقل را نشان مي دهد . موتور جريان داتم توسط مبدل استاتيكي ( يكسو ساز ) از طريق شبكه تحريك مي گردد . اما تغذيه مدار آرميچر از طريق رتور موتور آسنكرون رتور سيم پيچي عملي مي شود . براي اين منظور جريان متناوب توسط يكسو سازي به جريان مستقيم تبديل گرديده و توسط مقاومتي به مدار آرميچر منتهي مي شود . در اينجا مقاومت جهت كوپلاژ دو ماشين بوده و ضمن كار اتصال كوتاه مي گردد . بدين ترتيب از رتور موتور آسنكرون رتور سيم پيچي شده استفاده مي شود . ماشين جريان داتو در مقايسه با ماشين آسنكرون كوچك مي باشد ، زيرا UA=UR   است . دو ماشين مضافاً كوپلاژ مكانيكي هستند .خوبي مدار كاسكاد در آنست كه از قابليت تنظيم دور نسبتاً آسان ماشين جريان دائم جهت تنظيم دور ماشين آسنكرون استفاده مي شود . علاوه بر آن توان الكتريكي رتور موتور آسنكرون به شكل انرژي مكانيكي روي محور مشترك بر گردانده مي شود .


                    


 


 


 


محرك هاي تنظيم پذير سرعت  (Adjustable Speed Drive)


 


در اين بخش كاربر نيمه هادي هاي قدرت در سيستمهاي كنترل سرعت از نوع ايستا يا استاتيكي هستند . بايد دانست كه تركيب سيستمهاي الكترونيك قدرت (مانند كنترل كننده هاي ولتاژ ) و متوتورهاي الكتريكي همراه با مكانيسم كنترل آنها را محركهاي تنظيم پذير سرعت مي نامند كه ما به اختصار آنرا ASD مي ناميم . در حقيقت اين محرك ها قابل تنظيم بوده و براي كنترل سرعت يا كنترل دور موتورهاي الكتريكي مورد استفاده قرار مي گيرند .


محركهاي تنظيم پذير سرعت (ASD) براي كنترل سرعت موتورهاي القائي از نقطه نظر كاربرد به سه دسته تقسيم مي شوند:


1- ASD از نوع ولتاژ متغيير و فركانس ثابت


در اينگونه سيستمها دامنه ولتاژ اعمالي به استاتور كنترل مي شود . براي اين مقصود از كنترل كننده ولتاژ در سر راه موتور استفاده شده است . اين نوع محرك ها در سطوح قدرت متوسط و پايين مورد استفاده قرار مي گيرند . براي مثال مي توان از بادبزن هاي نسبتاً بزرگ يا پمپ ها نام برد . در اين روش ولتاژ استاتور را مي توان بين صفر و ولتاژ اسمي در محدوده زاويه آتش بين صفر تا 120 درجه تنظيم و كنترل نمود . اين سيستم بسيار ساده بوده و براي موتورهاي القائي قفس سنجابي كلاس D با لغزش نسبتاً بالا( 10 تا 15 درصد ) مقرون به صرفه است . عملكرد اين محركها زياد جالب توجه نيست .


 


2- ASD از نوع ولتاژ و فركانس متغيير


اگر منبع تغذيه استاتور از نوع فركانس متغيير انتخاب شود ، عملكرد محرك هاي تنظيم پذير سرعت (ASD) بهبود مي يابد . بايد دانست كه شار در فاصله هوايي متورهاي القائي با ولتاژ اعمالي به استاتور متناسب بوده وبا فركانس منبع تغذيه نسبت عكس دارد . بنابراين اگر فركانس را كم كنيم تا كنترل سرعت در زير سرعت سنكرون امكان پذير گردد و ولتاژ را معادل ولتاژ اسمي ثابت نگه داريم ، در اين صورت شار فاصله هوايي زياد مي شود . براي جلوگيري از بوقوع پيوستن اشباع بخاطر افزايش شار ، ASD از نوع فركانس متغيير بايد از نوع ولتاژ متغيير نيز باشد تا بتوان شار فاصله هوايي را در حد قابل قبولي نگه داشت ، معمولا به اين سيستم كنترل ، سيستم كنترل V/F ثابت نيز گفته مي شود . يعني اگر فركانس را كم كرديم بايد ولتاژ را طوري كم كنيم كه شار در فاصله هوايي در حد اسمي خود باقي بماند . از اين سيستم براي كنترل سرعت موتورهاي قفس سنجابي كلاسهاي A، B ،C، D استفاده مي شود .   


 


3-ASD كه بر اساس بازيافت توان لغزشي كار مي كند


در اين سيستمها با استفاده از مدارهاي نيمه هادي قدرت كه به پايانه رتور وصل مي شوند ، بازيافت توان( يا توان برگشتي) در فركانس لغزشي به خط تغذيه موتور منتقل مي گردد . بايد دانست فركانس لغزشي از حاصلضرب فركانس منبع و لغزش موتور بدست مي آيد. بطور كلي در اين طرح بر روي مدار رتور كنترل خواهيم داشت . در اينجا متذكر مي شويم كه ASD از نوع فركانس متغيير بر دو نوع است :


الف : طرح هاي حاوي ارتباط DC (جريان مستقيم)


ب : سيكلو كنورتورها


در طرح هاي حاوي ارتباط DC منبع تغذيه AC توسط يكسوساز ، يكسو شده و سپس توسط اينورتر مجدداً به منبع AC دست مي يابيم . اينورتر ها بر دو نوع اند :


1= اينورترهاي تغذيه ولتاژ (اينورترهاي ولتاژ )


2= اينورترهاي تغذيه جريان ( اينورترهاي جريان )


در اينورترهاي ولتاژ ، متغيير تحت كنترل همان ولتاژ و فركانس اعمالي به استاتور است . در اينورترهاي جريان بر دامنه جريان وفركانس استاتور كنترل داريم . اينورترهاي ولتاژ بر دو نوع اند :


1=اينورترهاي با موج مربعي


2= اينورترهاي با مدولاسيون عرض يا پهناي پالس (PWM) .


 


 


 


كنترل دور موتور القائي سه فاز توسط اينورتر منبع جريان


1- تركيب اساسي مبدلها


سرعت يك موتور القائي توسط سرعت سنكرون ولغزش رتور تعيين مي گردد . سرعت سنكرون بستگي به فركانس تغذيه دارد و لغزش را مي توان با تنظيم ولتاژ و جريان اعمالي به موتور تغيير داد . به طور كلي روشهاي كنترل دور موتورهاي القائي را مي توان بصورت زير تقسيم بندي نمود :


            1-  ولتاژ متغيير ، فركانس ثابت                      2- ولتاژ وفركانس متغيير


           3-  جريان و فركانس متغيير                           4- تنظيم قدرت لغزشي


 به منظور ايجاد ولتاژ و فركانس متغيير مطابق شكل (1-a)  از مبدلهاي ولتاژ استفاده مي گردد كه توسط يك منبع ولتاژ dc  توليد شكل موج مستطيلي ولتاژ در سمت ac  مي نمايند كه دامنه آن مستقل از بار بوده و به همين دليل اينورتر هاي منبع ولتاژ نام دارند . براي ايجاد جريان وفركانس متغيير مطابق شكل (1-b)   از مبدلهاي جريان استفاده مي گردد كه توسط يك منبع جريان dc   توليد شكل موج مستطيلي جريان در سمت ac   مي نمايند ، كه دامنه آن مستقل از بار بوده و بنابراين اينورترهاي منبع جريان نام دارند . منبع جريان كنترل شده در ورودي اينورتر توسط يكسو ساز تريستوري ايجاد مي گردد كه با كنترل جريان توسط حلقه فيدبك جريان وسلف بزرگ صافي در خروجي آن ويژگيهاي يك منبع جريان را پيدا مي كند . مبدل موجود در سمت موتور جريان مستقيم را تبديل به جريان سه فاز با فركانس قابل تنظيم مي نمايد . سلف بزرگ موجود در حلقه   dc سبب صاف نمودن جريان مي گردد . سيستم رانش اينورتر منبع جريان مناسب براي عملكرد در حالت تك موتوره مي باشد و داراي قابليت بازگشت انرژي به شبكه  ac  ميباشد . جريان اينورتر توسط حلقه فيدبك جريان كنترل شده و اضافه جريانهاي گذرا توسط تنظيم كننده جريان و سلف صافي حذف مي گردند و بدين وسيله مجموعه داراي قابليت استحكام و اطمينان مناسب براي كاربردهاي صنعتي مي گردد سلف بزرگ سري صافي نرخ افزايش جريان خطا را در هنگام كموتاسيون نا موفق در اينورتر و يا اتصال كوتاه در ترمينالهاي خروجي محدود مي نمايد با حذف سيگنالهاي فرمان گيت تريستورهاي يكسو ساز مي توان بدون از بين رفتن فيوزها و آسيب رسيدن به اينورتر ، تنها با از دست دادن لحظه اي گشتاور خطا را از بين برد .


 


2- مدار قدرت اينورتر منبع جريان


به منظور ايجاد منبع جريان متغيير  dc  سيگنال بيانگر جريان تنظيم شده با جريان واقعي مقايسه شده ، خطاي حاصل تقويت و برا ي كنترل زاويه آتش تريستورهاي يكسو ساز استفاده مي گردد تا جريان مورد نياز در خروجي ايجاد گردد . شكل (2-a)   اينورتر پل سه فاز ASCI   را نشان مي دهد كه يك موتور القائي با اتصال ستاره را تغذيه مي نمايد . تريستورهاي TH1  الي TH6   به ترتيب روشن شدن شماره گذاري شده اند و هر يك به اندازه يك سوم پريود خروجي هدايت ميكنند . روشن نمودن يك تريستور سبب قطع تريستور هادي فاز مجاور مي گردد . دو بانك خازي كه بصورت مثلث ، متصل مي باشند انرژي مورد نياز براي كموتاسيون ذخيره كرده و ديودهاي D1   الي D6 خازنها را از بار ايزوله مي نمايند . ترتيب هدايت تريستورهاي اينورتر به گونه اي است كه جريانهاي DC تنظيم شده از دو تريستور يكي متصل به خط مثبت وديگري متصل به خط منفي تغذيه عبور مي نمايد . در هر نيم سيكل به مدت 60o هر دو تريستور واقع بر يك بازو قطع بوده بنابراين جريان خط برابر صفر مي باشد . مزيت عمده اينورتر منبع جريان سادگي مدار لازم براي كموتاسيون تريستورها مي باشد . مدار كموتاسيون تنها شامل خازنها و ديودها بوده و به دليل حذف سلفهاي كموتاسيون ، فركانس عملكرد افزايش يافته نويز صوتي كاهش مي يابد . خازن كموتاسيون به گونه اي طراحي مي شود كه ولتاژ معكوس اعمالي بر تريستور ها محدود گردد تا باعث ايجاد زمان خاموشي لازم گردد. به همين دليل زمان خاموشي در دسترس به اندازه كافي زياد مي باشد تا بتوان از تريستور هاي غير سريع يكسوسازي استفاده نمود، كه اين امر اينورتر منبع جريان را در قدرت هاي متوسط به بالا بسيار اقتصادي مي سازد . سيكل كموتاسيون را مي توان به چهار پريود زماني تقسيم نمود:


شكل (2-a) شرايط اينورتر را قبل از آتش شدن TH1در فاصله زماني 1 نشان مي دهد .فرض براين است كه TH1 و TH2 هادي بوده و مطابق شكل جريان خروجي يكسوساز كنترل شده از طريق TH1،D1، فاز A موتور ، فازC موتور ، D2 ، TH2 ، جاري مي گردد . خازن هاي C1 ،C3 ،C5 به ترتيب به اندازه V0، 0 ، -V0شارژ شده اند در فاصله زماني2 با آتش شدن TH3 ، TH1 توسط C1 در باياس معكوس قرار گرفته و خاموش مي گردد .جريان مطابق شكل (2-b) در مسير TH3، بانك خازني متشكل از C1 موازي با تركيب سري C3 ،C5 و D1 جاري ميگردد و به صورت خطي بانك خازني راشارژ مي نمايد . TH1  تا زماني كه ولتاژ خازن C1تغيير پلاريته دهد در باياس معكوس قرار دارد. ديود  D3نيز در باياس معكوس بوده و جريانهاي فاز موتور داراي مقادير مشابه حالت قبل مي باشد . در فاصله زماني 3 با هدايت ديود D3 مسير جريان مطابق شكل(2-c) مي باشد. جريان مدار LC منتجه ، جريان فاز A را به صفر كشانده و جريان فاز B  را از صفر به Id افزايش مي دهد ، سپس D1 قطع شده و سيكل كموتاسيون تكميل مي گردد . در فاصله زماني 4 جريان منبع از طريق تريستور هاي TH2 و TH3 مطابق شكل (2-d) فازهاي B   و C متور را تغذيه مي نمايد . اين شرايط تا لحظه فرمان TH4 به منظور انجام كموتاسيون بعدي حفظ مي گردد . به دليل اينكه D3 تنها ديد هادي در نيمه بالا مي باشد خازن هاي بالايي تاكموتاسيون بعدي ولتاژ خود را ثابت نگه مي دارند . شكل (3) شكل موج ولتاژ خازن كموتاسيون C1 را همزمان با ولتاژ دو سر تريستور نمايش مي دهد.                                                                                                


                                                                                                                                                                                


3- عملكرد موتو القائي تغذيه شده توسط منبع جريان


هنگامي كه اينورتر منبع جريان يك بار الكتريكي را تغذيه مي نمايد ، شكل موج ولتاژ توسط پاسخ بار به جريان اعمالي تعيين مي گردد . رابطه ولتاژ- جريان يك سلف به صورت V=L di / dt بوده كه در آن di/dt نرخ تغييرات جريان مي باشد . بنابراين شكل موجهاي ايده ال جريان در عمل انكار پذير نيستند زيرا تغيير پله اي لحظه اي جريان سبب ايجاد پرش ولتاژ با دامنه نا محدود خواهد گرديد . در مدارات عملي نرخ تغييرات جريان براي محدود نمودن حداكثر ولتاژ در حد تحمل تريستورها محدود مي گردد . مدت زمان كموتاسيون كه در طول آن جريان بار از يك فاز به فاز ديگر منتقل مي گردد بايستي به حد كافي طولاني باشد تا نرخ تغييرات جريان در حد قابل قبولي كاهش يابد اين محدوديت در مورد اينورترهاي منبع ولتاژ مطرح نمي گردد چرا كه در اين مورد ديودهاي فيدبك مسيري را براي جريان بار القائي ايجاد مي نمايند كه باعث شارژ خازن حلقه dc گشته ، از قطع ناگهاني جريان بار جلوگيري كرده و ولتاژ خروجي اينورتر را محدود مي نمايند . اما در مورد اينورتر منبع جريان به دليل عدم وجود ديودهاي فيدبك ، مسيري براي جريان معكوس وجود نداشته و مدت زمان كموتاسيون را مي توان به قيمت افزايش ضربه هاي ولتاژ اعمالي بر ادوات نيمه هادي قدرت اينورتر كاهش داد .

شكل (4) شكل موج جريان خط و شكل (5) شكل موج ولتاژ خط را براي مدار طراحي شده نشان مي دهد . در مورد موتورهاي القائي ، شكل موج ولتاژ توسط امپدانس معادل بازاء مؤلفه هاي اصلي و هارمونيهاي جريان خروجي اينورتر تعيين ميگردد مطابق شكل  (6) ،جريان مستطيل شكل خط از امپدانس استاتور عبور كرده و بين شاخه مغناطيس كننده وشاخه رتور مدار معادل تقسيم مي گردد . امپدانس بالاي شاخه مغناطيس كننده از عبور مؤلفه هاي هارمونيكي جريان خط جلوگيري كرده در نتيجه جريان مغناطيس كننده داراي شكل موج سينوسي با فركانس اصلي خواهد بود . با صرفنظر از اعوجاج كم توليد شده توسط امپدانس Zs   ولتاژ ترمينال موتور به صورت سينوسي بههمراه پرشهاي ولتاژي مي باشد كه در ابتدا و انتهاي شكل موج جريان بر روي آن سوار مي گردند . تريستورها و ديودهاي اينورتر بايستي در برابر اين پرش هاي ناگهاني ولتاژ حفاظت شوند . دامنه جريان توسط يكسوساز كنترل شده تعيين و ولتاژ متوسط ورودي اينورتر با ميزان توان مورد نياز موتور تغيير مي كند بگونه اي كه با صرفنظر از تلفات ،توان ورودي اينورتر با توان خروجي آن برابر است . در حالت بي باري موتور حلقه dc تقريباً صفر بوده در حال كه در بار كامل ولتاژ حلقه dc داراي حداكثر مقدار خواهد بود ، بر خلاف اينورتر منبع ولتاژ ورودي ثابت بوده و جريان حلقه dc

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:45  توسط 66  | 

کوره هاي القايي در مقايسه با کوره هاي سوخت فسيلي داراي مزاياي فراواني از جمله دقت بيشتر ، تميزي و تلفات گرمايي کمتر و ... است . همچنين در کوره هايي که در آنها از روشهاي ديگر ، غير القاء استفاده مي شود ، اندازه کوره بسيار بزرگ بوده و در زمان راه اندازي و خاموش کردن آنها طولاني است . عبور جريان از يک سيم پيچ و استفاده از ميدان مغناطيسي براي ايجاد جريان در هسته سيم پيچ ، اساس کار کوره هاي القايي را تشکيل مي دهد . در اين کوره ها از حرارت ايجاد شده توسط تلفات فوکو و هيسترزيس براي ذوب فلزات يا هرگونه عمليات حرارتي استفاده مي شود

    کوره هاي القايي در مقايسه با کوره هاي سوخت فسيلي داراي مزاياي فراواني از جمله دقت بيشتر ، تميزي و تلفات گرمايي کمتر و ... است . همچنين در کوره هايي که در آنها از روشهاي ديگر ، غير القاء استفاده مي شود ، اندازه کوره بسيار بزرگ بوده و در زمان راه اندازي و خاموش کردن آنها طولاني است . عبور جريان از يک سيم پيچ و استفاده از ميدان مغناطيسي براي ايجاد جريان در هسته سيم پيچ ، اساس کار کوره هاي القايي را تشکيل مي دهد . در اين کوره ها از حرارت ايجاد شده توسط تلفات فوکو و هيسترزيس براي ذوب فلزات يا هرگونه عمليات حرارتي استفاده مي شود .

    نخستين کوره القايي که مورد بهره برداري قرار گرفت از شبکه اصلي قدرت تغذيه ميشد و هيچگونه تبديل فرکانسي صورت نمي گرفت . با توجه به اينکه افزايش فرکانس تغذيه کوره موجب کاهش ابعاد آن و بالا رفتن توان (تلفات) مي شود ، براي رسيدن به اين هدف ، در ابتدا منابع تغذيه موتور ژنراتوري مورد استفاده واقع گرديد . هر چند با اين منابع مي توان فرکانس را تا حدودي بالا برد ، ولي محدوديت فرکانس و عدم قابليت تغيير آن و در نهايت عدم تطبيق سيستم تغذيه با کوره ، دو عيب اساسي اين سيستمها به شمار ميرفت . با توجه به اين معايب ورود عناصر نيمه هادي به حيطه صنعت موجب گرديد منابع تغذيه استاتيک جايگزين منابع قبلي شوند .

    در سال 1831 ميلادي مايکل فارادي (Faraday) با ارائه اين مطلب که اگر از سيم پيچ اوليه اي جريان متغيري عبور کند ، در سيم پيچ ثانويه مجاورش نيز جريان القاء ميشود ، تئوري گرمايش القايي را بنا نهاد . علت اصلي اين پديده القاء ، تغييرات شار در مدار بسته ثانويه است که از جريان متناوب اوليه ناشي ميشود . نزديک به يکصد سال اين اصل در موتورها، ژنراتورها ، ترانسفورماتور ها ، وسايل ارتباط راديويي و ... بکار گرفته مي شد و هر اثر گرمايي در مدارهاي مغناطيسي به عنوان يک عنصر نا مطلوب شناخته مي شد . در راستاي مقابله با اثرات حرارتي در مدارهاي مغناطيسي و الکتريکي از سوي مهندسين گامهاي موثري برداشته شد . آنها توانستند با مورق نمودن هستهِ مغناطيسي موتورها و ترانسفورماتورها ، جريان فوکو(Eddy Current) را که عامل تلفات حرارتي بود مينيمم نمايند .

    به دنبال آزمايشات فارادي ، قوانين متعددي پيشنهاد شد . قوانين لنز (Lenz) و نيومن (Neuman) نشان دادند که جريان القاء‌ شده با شار القايي مخالفت کرده و به طور مستقيم با فرکتنس متناسب مي باشد . فوکو (Focault) در سال 1863 در مقاله اي تحت عنوان "القاء جريان در هسته" (The Induction Of Current in Cores) که توسط هويسايد (Heviside) منتشر گرديد نظريه اي راجع به جريان فوکو ارائه داد و در رابطه با انتقال انرژي از يک کويل به يک هسته توپر بحث نمود . علاوه بر افراد فوق ، تامسون (Thomson) نيز در ارائه نظريه گرمايش از طريق القاء سهم بسزايي داشت .

    در اواخر قرن نوزدهم استفاده از تلفات فوکو و هيسترزيس به عنوان منبع گرمايش القائي از طرف مهندسين مطرح شد . همچنين در اوايل قرن اخير در کشورهاي فرانسه ، سوئد و ايتاليا بر اساس استفاده از خازنهاي جبران کننده توان راکتيو پيشنهاداتي براي کوره هاي القايي بدون هسته ارائه شد . در اين پيشنهادات بيشتر ذوب فلزات در فرکانسهاي مياني مورد نظر بود .

    دکتر نورث روپ (Northrup) ايده کوره با فرکانس مياني را براي موارد صنعتي گسترش داد . در روزهاي نخستين ، بر اثر نبود امکانات از جمله خازنهاي با ظرفيت کافي و قابل اطمينان ، توسعه و پيشرفت متوقف شد . بعدها در سال 1927 کمپاني کوره هاي الکتريکي (Electrical Furnace CO. [EFCO.]) نخستين کوره الکتريکي با فرکانس مياني را در شفيلد انگلستان و به منظور آهنگري و گرمادهي موضعي فلزات جهت اتصال به يکديگر ، نصب کرد . بعد از اين ، تعداد و اندازه اين کوره ها رو به افزايش گذاشته است . لازم به ذکر است که مزيتهاي ديگر کوره هاي القايي همچون دقت زياد براي گرم کردن تا عمق مورد نظر و حرارت دادن نواحي سطحي در طي پيشرفتهاي بعدي ( در سالهاي جنگ جهاني دوم ) بيشتر آشکار شد . در گرمايش القايي عدم نياز به منبع خارجي گرم کننده ، تلفات گرمايي کمتر شده و تميزي شرايط کار تامين ميگردد . در اين روش همچنين نيازي به تماس فيزيکي بار و کويل نبوده و علاوه بر اين چگالي توان بالا در مدت زمان گرمايش کم به آساني قابل دسترس مي باشد .

    در ابتدا کوره هاي القايي مستقيماً از شبکه قدرت تغذيه مي شدند که بنوبه خود گام موفقي در استفاده از توان الکتريکي جهت عمليات حرارتي بحساب ميآمد .

    از آنجائيکه تلفات فوکو و هيسترزيس با فرکانس نسبت مستقيم دارند و اينکه ابعاد کويل کوره با بالا رفتن فرکانس کاهش مي يابد ، مهندسين به فکر تغذيه کوره در فرکانسهاي بالاتر از فرکانس شبکه قدرت افتادند . اولين قدم در اين راه استفاده از فرکانسهاي دو برابر و سه برابر که از هارمونيکهاي دوم و سوم بدست مي آمدند ، بود .

 اين هارمونيکها بر خلاف طبيعت مخرب خود در اين نوع کاربرد سودمند تشخيص داده شدند . پائين بودن راندمان در استفاده از هارمونيکهاي فوق موجب گرديد طراحان روش ديگري را مورد استفاده قرار دهند در اين مرحله سيستم موتورـژنراتور توسعه يافت که با استفاده از اين سيستم توانستند فرکانس تغذيه را تا صدها هرتز افزايش دهند . در کوره هاي القايي افزايش فرکانس باعث کاهش عمق نفوذ جريان القايي ميگردد لذا در عمليات حرارتي سطحي که سختکاري سطح فلز ، مورد نظر مي باشد از کوره هاي القايي با فرکانس بالا استفاده مي شود . با ورود عناصر نيمه هادي مانند تريستورها ، ترانزيستورها و موسفت ها به حيطه صنعت محدوديت فرکانس و عدم تغيير آن ، در تغذيه کوره ها مرتفع شد .

 
   از لحاظ سيستم قدرت ميتوان سيستمهاي القايي را به چهار دسته اساسي تقسيم نمود :

 الف ) سيستمهاي منبع (Supply Systems)
 در اين سيستمها که فرکانس کار آنها بين 50 تا 60 هرتز و 150 تا 540 هرتز مي باشد احتياجي به تبديل فرکانس نيست و با توجه به فرکانس کار ،‌ عمق نفوذ جريان زياد بوده و حدود 10 تا 100 ميليمتر مي باشد . همچنين مقدار توان لازم تا حدود چندين صد مگا وات نيز ميرسد .

 ب ) سيستمهاي موتورـژنراتور (Motor-Generator Systems) 
فرکانس اين سيستمها از 500 هرتز تا 10 کيلو هرتز مي باشد . در اين سيستمها تبديل فرکانس لازم بوده و اين عمل بوسيله ژنراتورهاي کوپل شده با موتورهاي القايي صورت مي پذيرد . همچنين در اين سيستمها توان به وسيله ماشينهاي 500 کيلو وات تامين ميگردد و براي بدست آوردن توانهاي بالاتر ،‌ از سري کردن ماشينها استفاده ميشود . عمق نفوذ در اين سيستمها به خاطر بالاتر بودن فرکانس نسبت به سيستمها منبع ، کمتر بوده و در حدود 1 تا 10 ميليمتر است .

 ج ) سيستمهاي مبدل نيمه هادي (Solid-State Converter Systems) 
در اين سيستمها فرکانس در محدوده HZ 500 تا KHZ‌ 100 بوده و تبديل فرکانس به طرق گوناگوني صورت ميپذيرد . در اين سيستمها از سوئيچهاي نيمه هادي استفاده ميشود و توان مبدل بستگي به نوع کاربرد آن تا حدود MW 2 ميتواند برسد .

 د ) سيستمهاي فرکانس راديويي (Radio-Frequency System)
فرکانس کار در اين سيستم در محدوده KHZ 100 تا MHZ 10 مي باشد . از اين سيستمها براي عمق نفوذ جريان بسيار سطحي، در حدود 1/0 تا 2 ميليمتر استفاده مي گردد و در آن از روش گرمايي متمرکز با سرعت توليد بالا استفاده ميگردد

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:44  توسط 66  | 

 

زماني كه كابل هاي ساخته شده با مواد ترموپلاستيك در معرض آتش سوزي قرار گيرند، صدمات قابل توجهي به افراد و تجهيزات وارد مي شود. در صورتي كه نصب كابل با مهارت انجام پذيرد، عملكرد مناسب آن تضمين شده و باعث آتش سوزي نخواهدشد. از طرف ديگر آتش گرفتن كابل و انتشار شعله در طول كابل مي تواند به عواملي چون نوع كابل، روش نصب، جنس مواد عايق و روكش به كار رفته، بستگي داشته باشد. در صورت وسعت يافتن آتش و افزايش دماي شعله، ديگر نمي توان عملكرد صحيح كابل و ملحقات الكتريكي آن را در شرايط اتصال كوتاه تضمين نمود.هنگام بروز آتش سوزي در مكان هاي عمومي، بكارگيري و استفاده از روشنايي اضطراري، آسانسورها، تهويه و ... از درجه اهميت بالايي برخوردار مي باشند.  استانداردهاي ذيل جهت آزمون مقاومت سيم ها و كابل ها دربرابر شعله در دسترس مي باشند:
IEC  60331- 11 : تجهيزات تست ـ اعمال آتش به تنهايي در دماي شعله حداقل 750 درجه سانتيگراد.
IEC  60331- 21 : روش ها و الزامات ـ كابل هاي با ولتاژ تا وخود 0.6/1 كيلو ولت
IEC  60331- 22 : روش ها و الزامات ـ كابل هاي با ولتاژ تا وخود 0.6/1 كيلو ولت
IEC  60331- 23 : روش ها و الزامات ـ كابل هاي انتقال اطلاعات الكتريكي
IEC  60331- 25 : روش ها و الزامات ـ كابل هاي فيبرنوري



آزمون كابل هاي الكتريكي در شرايط آتش*

Circuit - Integrity
 ترجمه: بهرام شمس ـ فريا گلسرخي

(IEC - 60331 )بخش اول زماني كه كابل هاي ساخته شده با مواد ترموپلاستيك در معرض آتش سوزي قرار گيرند، صدمات قابل توجهي به افراد و تجهيزات وارد مي شود. در صورتي كه نصب كابل با مهارت انجام پذيرد، عملكرد مناسب آن تضمين شده و باعث آتش سوزي نخواهدشد. از طرف ديگر آتش گرفتن كابل و انتشار شعله در طول كابل مي تواند به عواملي چون نوع كابل، روش نصب، جنس مواد عايق و روكش به كار رفته، بستگي داشته باشد. در صورت وسعت يافتن آتش و افزايش دماي شعله، ديگر نمي توان عملكرد صحيح كابل و ملحقات الكتريكي آن را در شرايط اتصال كوتاه تضمين نمود.هنگام بروز آتش سوزي در مكان هاي عمومي، بكارگيري و استفاده از روشنايي اضطراري، آسانسورها، تهويه و ... از درجه اهميت بالايي برخوردار مي باشند.  استانداردهاي ذيل جهت آزمون مقاومت سيم ها و كابل ها دربرابر شعله در دسترس مي باشند:

IEC  60331- 11 : تجهيزات تست ـ اعمال آتش به تنهايي در دماي شعله حداقل 750 درجه سانتيگراد.
IEC  60331- 21 : روش ها و الزامات ـ كابل هاي با ولتاژ تا وخود 0.6/1 كيلو ولت
IEC  60331- 22 : روش ها و الزامات ـ كابل هاي با ولتاژ تا وخود 0.6/1 كيلو ولت
IEC  60331- 23 : روش ها و الزامات ـ كابل هاي انتقال اطلاعات الكتريكي
IEC  60331- 25 : روش ها و الزامات ـ كابل هاي فيبرنوري

* منبع:      KERPEN
نكات كلي درباره ويژگي هاي ساختاري كابل هاي مقاوم در برابر آتش با ولتاژ تاوخود 0.6/1 كيلو ولت:جهت اطمينان از مقاوم بودن كابل در برابر آتش و عملكرد صحيح آن، لازم است هادي با ماده اي عايق گردد كه بتواند همزمان، قادر به تحمل درجه حرارت شعله آتش بوده و در عين حال خواص عايقي خود را حفظ نمايد. استفاده از نوار ميكا و يا هر غلاف ديگري كه بتواند نقش محافظ را در برابر آتش و در خلال سوختن ايفا نمايد، به دور عايق معدني (كابل هايي با عايق معدني)، توصيه مي گردد. درصورتي كه از نوارهاي ميكا براي ايجاد مقاومت در برابر آتش استفاده  شود، بايد از يك عايق الكتريكي اضافه نيز بر روي       هادي هايي كه با نوار ميكا محصور شده اند، بهره گيري شود.لايه عايق دوم به دو منظور استفاده مي شود، نخست در نقش عايق الكتريكي و سپس جهت حفاظت نوارهاي ميكا در صورت صدمات مكانيكي. وجود اسيدهاي  هدايت كننده، استفاده از مواد عايق بدون هالوژن را الزامي مي نمايد، چراكه در هنگام تست شعله، اسيد موجود از نوارهاي ميكا عبور كرده، باعث هدايت جريان بين هادي ها شده و به اتصال كوتاه منجر مي گردد. روكش نهايي1 (در مورد كابل هاي غيرمسلح) و يا روكش جدا كننده 2 ( در مورد كابل هاي مسلح)، كه مستقيما" بر روي سيم هاي عايق شده به كار مي رود نيز بايد بدون هالوژن باشد.
(در مباحث آينده به جزئيات ساختاري كابل هاي مقاوم در برابر آتش در قالب 3 دسته پرداخته خواهدشد).     

1-   Sheathing

2-   Bedding
21-IEC  60331 (1. Edition   1994 - 04)آزمون مقاوم بودن سيم و كابل عايق در شرايط آتشروش ها و الزامات ــ كابل هاي با ولتاژ تا وخود 0.6/1 كيلوولت يك نمونه 1200 ميليمتري از كابل را انتخاب نموده و به اندازه 100 ميليمتر از روكش يا پوشش خارجي آن را از هر طرف جدا مي نماييم. دوسر كابل را در دو انتها جهت         اتصال هاي الكتريكي آماده كرده و سر سيم ها را به اندازه كافي از يكديگر                     جدا مي كنيم تا از اتصال هادي ها به يكديگر جلوگيري به عمل آيد. كابل به صورت افقي در دستگاه تست قرار گرفته و در دو انتها توسط گيره هايي نگهداشته مي شوند. بايد  توجه نمود كه گيره ها در قسمت داراي روكش قرارگيرند. طول منبع حرارتي 500 ميليمتر است و از نوع مشعل هاي تخت انتخاب مي گردد؛ زيرا اين مشعل ها يك رديف از    شعله هاي نزديك به هم و يكنواخت را توليد مي نمايند. براي ايجاد شعله حجم گــاز ورودي 0.25) l/min± (5 و حجم هواي ورودي  5) l/min ± (80  مي باشد تاجايي كه ترموكوپل ها دمايي معادل 750 درجه سانتيگراد را نشان دهد. محل استقرار ترموكوپل ها بايد به گونه اي باشد كه اولا" موازي مشعل بوده، 70 ميليمتر بالاي آن و 45 ميليمتر دور از آن قرار گرفته و ثانيا" سر ترموكوپل در داخل شعله قرار گيرد.نمونه مورد نظر بايد به گونه اي قرار گيرد كه شعله هاي مشعل با سطح پائيني آن در تماس باشد. ولتاژ از طريق خروجي يك ترانس كه در سرراه هر فاز آن يك فيوز 2 آمپري نصب شده است به هادي هاي كابل اعمال مي گردد. هنگام تست، نول مدار و كليه قسمت هاي فلزي تجهيزات تست از جمله نگهدارنده ها بايد به زمين متصل شوند.پس از برقراري اتصالات الكتريكي، برق دستگاه را روشن مي كنيم. ولتاژ خروجي ترانس بايد به گونه اي تنظيم گردد كه ولتاژ اعمال شده ميان هادي ها معادل ولتاژ نامي كابل باشد. طول زمان آزمون 90 دقيقه و اعمال ولتاژ به صورت پيوسته خواهد بود. در حين آزمون بايد شعله هاي آتش در برابر جريان هوا محافظت گردند.پس از گذشت 90 دقيقه، آتش را خاموش كرده و كابل به مدت 15 دقيقه ديگر همچنان تحت ولتاژ باقي مي ماند؛ در نتيجه كل زمان آزمون، مدت زمان اعمال آتش و 15 دقيقه زمان مربوط به خنك شدن را شامل مي شود. پس از طي مراحل فوق، هادي بايد مورد آزمون پيوستگي قرار گيرد.در كل، آزمون مقاوم بودن در برابر آتش در صورتي موفقيت آميز است كه در كل مدت زمان آزمون هيچ گونه قطع

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:43  توسط 66  | 

 
گرايش قدرت
هدف اصلي مهندسين اين گرايش، توليدبرق در نيروگاهها، انتقال برق از طريق خطوط انتقال و توزيع آن در شبكه هاي شهري و در نهايت توزيع آن براي مصارف خانگي و كارخانجات است. بنابراين يك مهندس قدرت بايدبه روشهاي مختلف توليد برق، خطوط انتقال نيرو و سيستم هاي توزيع آشنا باشد.گرايش قدرت به آموزش و پژوهش در زمينه طراحي و ساخت سيستم هاي مورد استفاده در توليد، توزيع، مصرف و حفاظت ازبرق مي پردازد.به عبارت ديگر دانشجويان اين رشته در شاخه توليد با انواع نيروگاههاي آبي، گازي،سيكل تركيبي و ... آشنا مي شوند. و در بخش انتقال و توزيع، روشهاي مختلف انتقال برق اعم از كابلهاي هوايي و زيرزميني را مطالعه مي كنند و در شاخه حفاظت نيز انواع وسايل و تجهيزات حفاظتي كه در مراحل مختلف توليد، توزيع، انتقال و مصرف انرژي،انسانها و تاسيسات را در برابر حوادث مختلف محافظت مي كنند، مورد بررسي قرار ميدهند كه از آن ميان مي توان به انواع رله ها، فيوزها، كليدها و در نهايت سيستم هاي كنترل اشاره كرد.
يكي ديگر از شاخه هاي قدرت نيز ماشين های الكتريكي است كه شامل ژنراتورها، ترانسفورماتورها و موتورهاي الكتريكي مي شود كه اين شاخه از زمينه هاي مهم صنعتي و پژوهشي گرايش قدرت است.


 

از درسهاي پايه و اصلي موثر در مهندسي قدرت مي توان به دروس مدار،الكترومغناطيس، الكترونيك، ماشين و بررسي اشاره كرد.
بعضي از درسهاي تخصصي اين گرايش عبارتند از :

ماشينهاي الكتريكي 3: اين درس از جمله درسهايي است كه ديدي صنعتي به دانشجو مي دهد. مبحث اين درس را مي توان به دو فصل مهم ترانفسورمرهاي سه فاز و ماشينهاي سنكرون تقسيم بندي نمود.

ترانسفورهاي سه فاز و ماشينهاي سنكرون: وسايلي الكتريكي هستند كه بيشتر جنبه صنعتي دارند و كاربردهاي بسيار زياد ترانسهاي سه فازدر انتقال و توزيع انرژي الكتريكي، تبديل ولتاژ در ابتداي همه كارخانه ها وكارگاههاي بزرگ صنعتي و ... بر هيچ كس پوشيده نيست. در اين درس در مورد انواع آرايشهاي اين ترانسها، كليه گروههاي موجود و كاربرد هر نوع، بحث جامعي مي شود.

ماشينهاي مخصوص : به تعبيري مي توان اين درس را نقطه عطف درسهاي تخصصي اين گرايش دانست. زيرا اين درس به بررسي در مورد ماشينهاي ويژه مي پردازد كه اين ماشينها در وسايل خانگي كاربرد فراوان دارند.

الكترونيك قدرت: الكترونيك قدرت در عمل بين الكترونيك و قدرت، آشتي برقرار كرده است. به طور مثال مي توان با فرمان يك ريزپردازنده كه حدود 5 ولت و 200 ميلي آمپر است يك كارخانه را راه اندازي كنيم. درزمينه الكترونيك قدرت المانهايي نظير تريستور، ترانزيستور و ... كاربردهاي فوقالعاده زيادي دارند. از مزاياي اين قطعات تحمل توانهاي بالا مي باشد

.بررسي سيستمهاي قدرت 2 : اين درس بيشتر در موردانتقال انرژي و مشكلات موجود در اين راه صحبت مي كند. از جمله مطالب ارائه شده دراين درس مي توان به پخش بار اقتصادي در شبكه هاي قدرت، اتصال كوتاههاي متقارن ونامتقارن روي شبكه قدرت و پايداري سيستمهاي قدرت اشاره نمود.

 

توليد و نيروگاه: اين درس يكي از درسهاي بسيار جذاب اين گرايش است، زيرا برخلاف ديگر درسها، زياد به مسائل نظري، نمي پردازد و جنبه بسيار عملي دارد. آشنايي با انواع نيروگاهها (آبي، اتمي، بادي، بخار، ...) و همچنين بحث كلي در مورد اين نيروگاهها و روشهاي كاري آنها از مباحث اين درس است

.رله و حفاظت : يك شبكه قدرت را بايد در مقابل خطرات احتمالي (اتصال كوتاهها) محافظت كرد. از وسائلي كه در اين مورد استفاده مي شود ميتوان به رله ها اشاره كرد كه بسته به نوع رله به محض ايجاد يك حالت خطا و يا خرابي در شبكه وارد عمل شده، قسمتي از شبكه را جدا كرد.

عايق و فشار قوي : با توجه به تفاوتهاي ولتاژهاي فشارقوي با ولتاژهاي فشار ضعيف، به طور حتم توليد، اندازه گيري و بهره برداري از اين ولتاژها تفاوتهاي عمده اي با ولتاژهاي فشار ضعيف دارد و براي عايق بندي شبكه فشارقوي بايد از عايقهاي مخصوصي استفاده كرد. فصل نخست اين درس به بررسي اين مقوله مي پردازد.در بخش دوم اين درس انواع تخليله الكتريكي، مراحل مختلف آن در عايقها و اثرات مختلف شكست بر عايق مورد بررسي قرار مي گيرد.

ترموديناميك : شايد اولين سوالي كه در مرحله اول به ذهن برسد ارتباط اين درس با درسهاي برق باشد. كاربرد اصلي مطالب اين درس مبحث توليدنيروگاه است. زيرا هنگام آشنايي با انواع نيروگاهها (نيروگاه بخار، گازي، اتمي و (… بايد اطلاعاتي در مورد سيكل كاري آنها داشته باشيم، پس داشتن اطلاعاتي در مورد ترموديناميك ضروري است.

اصول ميكروكامپيوتر : اين درس را به جرات مي توا ن از جذابترين و پركاربردترين درسهاي برق دانست زيرا در دنياي امروز كه تمامي وسايل مكانيكي آنالوگ جاي خود را به وسايل ديجيتالي مي دهند، داشتن اطلاعات كافي در موردنحوه كار پروسسورها از اولين نيازهاي يك مهندس برق مي باشد. با تركيب مطالب اين درس با هر كدام از درسهاي ديگر مي توان طرحهاي بسيار جالب و پركاربردي را طرح ريزي كرد.

 

+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:40  توسط 66  | 

مقدمه: یکی از اجزاء مهم شبکه های فشار قوی ، مقره ها می باشد که بر حسب ولتاژ مورد استفاده و شرایط محیطی از نظر آلودگی و رطوبت ، شکل خاصی به خود می گیرند. وظایف مقره ها در شبکه ها را می توان به صورت زیر بیان نمود :1. تحمل وزن هادی های خطوط انتقال و توزیع برای نگهداری سیم های هوایی روی پایه ها و دکل ها در بدترین شرایط (یعنی موقعی که ضخامت یخ و برف تشکیل شده روی سیم ها در حداکثر مقدار باشد) را داشته باشد و اصولاً باید بتوانند بیشترین نیروهای مکانیکی وارد شده بر ان ها را تحمل کنند.2. عایق بندی هادی ها و زمین و بین هادی ها با یکدیگر به عهده مقره است. یعنی مقره ها باید از استقامت الکتریکی کافی برخوردار باشند تا بتوانند بین فازهای شبکه و دکل ها که متصل به زمین هستند ایزولاسیون کافی برای تحمل ولتاژ فازها را داشته باشند. استقامت الکتریکی آن ها باید در حدی باشد کهدر بدترین شرایط (یعنی در حضور رطوبت ، باران ، آلودگی و بروز صاعقه با ولتاژ بالا) دچار شکست کامی الکتریکی نشوند.


بنابراین مقره ها باید دارای خصوصیات زیر باشند :1. استقامت الکتریکی بالا. 2. استقامت مکانیکی بالا.3. عاری از ناخالصی و حفره های داخلی.4. استقامت در برابر تغییرات درجه حرارت و عدم تغییر شکل در اثر تغییر دما (با توجه به ضریب انبساط حرارتی که بایستی کم باشد).5. ضریب اطمینان بالا.6. ضریب تلفات عایقی کم.7. در برابر نفوذ آب و آلودگی ها مقاوم باشد. جنس مقره ها جنس مقره ها معمولاً از چینی یا شیشه است. مقره های چینی از سه ماده مختلف تشکیل شده است :1. کائولین یا خاک چینی AL2O3-2SIO2-2H2O به مقدار 40 تا 50 درصد.2. سیلیکات آلومینیوم (فلداسپات) K2O-AL2O3-6SIO2 به مقدار 25 تا 30 درصد.3. خاک کوارتز SIO2 به مقدار حداکثر 25 درصد.این سه نوع با ترتیب برای بالا بردن استقامت حرارتی ، الکتریکی و مکانیکی به کار می روند. به عبارت دیگر خواص الکتریکی ، مکانیکی و حرارتی چینی بستگی به درصد فراوانی این سه جزء دارد. هر چه فلداسپات بیشتر باشد استقامت الکتریکی آن زیادتر می شود و هر چه مقدار کوارتز بیشتر شود ، استقامت مکانیکی آن بیشتر شده و با افزایش کائولین ، استقامت حرارتی آن بیشتر می شود.برای تهیه چینی ، مواد فوق را با کمی آب خالص مخلوط می کنند تا به صورت گل و خمیر در آید. سپس این گل را در قالب های معینی شکل داده و در کوره حرارت می دهند تا پخته شود و رطوبت آن نیز گرفته شود. البته قبل از قالب گیری ، درصد رطوبت گل را پایین می آورند و تحت خلاء ان را پرس می کنند ، پس از ریخته شدن آن را سرد می کنند. ولی سرد کردن آن به طور ناگهانی انجام نمی شود و با ملایم این کار صورت می گیرد. تا ترکی در آن ایجاد نشود. پس از این مرحله یک لایه لعاب شیشه ای بر روی آن می ریزند تا سطح آن کاملاً خالی از وجود حباب ها و ترک های مویین گردد. لعاب شیشه ای علاوه بر افزایش استقامت مکانیکی مقره قدرت چسبندگی گرد و غبار و نفوذ گرد و غبار و رطوبت را کاهش می دهد. همچنین باعث ایجاد یک سطح کاملاً صاف می شود که باعث افزایش مقاومت سطحی عایق می شود.درجه حرارت پختن در کوره نیز در تعیین استقامت الکتریکی و مکانیکی مقره چینی مؤثر است که هر چه در درجه حرارت بالاتری قرار داده شود ، حبابهای هوا در آن کمتر به وجود می آیند و استقامت الکتریکی آن زیاد می شود اما در عوض عایق خیلی ترد و شکننده می شود و هرچه درجه حرارت پختن در کوره کمتر شود استقامت مکانیکی آن بیشتر می شود و هر چه درجه حرارت پختن در کوره کمتر می شود ، استقامت مکانیکی آن بیشتر می شود ، ولی حفره های بیشتری در آن باقی می ماند و استقامت الکتریکی آن بیشتر می شود ولی حفره های بیشتری در آن باقی می ماند و استقامت الکتریکی آن کاهش می یابد. معمولاً درجه حرارت پخت در کوره را بین 1200 تا 1500 درجه نگه م دارند. در نتیجه ، استقامت الکتریکی چینی بین 120 (kv/cm) تا 280 (kv/cm) می باشد. همچنین استقامت مکانیکی چینی در برابر نیروی فشاری 690 (MNt/m2) (در مقاطع بزرگتر 275 (MNt/m2) ) و در برابر نیروی کششی 48 (MNt/m2) (در مقاطع بزرگتر 20 (MNt/m2)) و در برابر نیروی خمشی 95 (MNt/m2) می باشد. از خواص بسیار مهم چینی می توان آسان شکل گرفتن آن ها و استقامت در برابر مواد شیمیایی و تغییرات جوی را نام برد.شیشهمعمولاً شیشه را در درجه حرارت هی بالا با مخلوطی از مواد مختلف از جمله آهک و پودر کوارتز ذوب می نمایند و سپس به طور ناگهانی آن را سرد نموده و قالب ریزی می کنند. این عمل ((Toughening) باعث سفت شدن شیشه می شود). بدین ترتیب مقره شیشه ای با استقامت مکانیکی خیلی زیاد بدست می آید که در مقابل لب پریدگی از چینی مقاوم تر است و استقامت مکانیکیفشاری آن 5/1 برابر چینی است و استقامت مکانیکی آن در برابر نیروهای خمشی اندک ، کمتر از چینی است.همچنین استقامت الکتریکی آن هم خیلی بیشتر از عایق های چینی است (بین 500 تا 1000 کیلو ولت بر سانتی متر).مزیت دیگر شیشه این است که ضریب انبساط حرارتی آن کوچک است و در نتیجه تغییر شکل نسبی آن در اثر تغییر درجه حرارت ، خیلی کم است. همچنین در مقره های شیشه ای ، قبل از بروز ترک ، کاملاً خرد می شوند و لذا از روی زمین به راحتی می توان مقره معیوب را تشخیص داد. بر خلاف مقره های چینی ، در واقع ساخت مقره های شیشه ای ، معمولاً حفره در آن به وجود نمی آید و اگر ترک یا حفره ای هم باشد به راحتی قابل مشاهده است. به علاوه به علت عبور نور خورشید از آن در اثر شاف بودن ، مقاومت آن در برابر نور خورشید بیشتر است . اما معایب شیشه آن است که :1. اولاً رطوبت به راحتی در سطح آن تقطیر می شود.2. به علت تغییر شکل نسبی داخلی پس از سرد شدن ، نمی توان مقره های بزرگی از آن ها ساخت.3. گرد و خاک را بیشتر به خود جذب می کند. شکست الکتریکی در مقره ها دو نوع شکست در مقره ها ممکن است رخ دهد :1. سوراخ شدن مقره ( شکست الکتریکی داخل بدنه مقره) :این شکست بستگی به جنس مقره ، ضخامت بدنه مقره و ناخالصی های آن دارد که غالباً اتفاق نمی افتد ؛ مگر در هنگام صاعقه های بسیار خطرناک و امواج سیار روی خط چین رخ می دهد. ضخامت بدنه مقره را طوری طراحی می کنند که برای ولتاژهای ضربه صاعقه ای و امواج سیار ناشی از سویچینگ سوراخ نشود.2. جرقه سطحی مقره :به علت اینکه سح مقره ها با هوا در ارتباط است و با توجه به اینکه استقامت الکتریکی هوا خیلی کمتر از مقره ها است لذا قبل از سوراخ شدن ، در روی سطح مقره ها جرقه زده می شود. معمولاً اگر بر روی سطح مقره ها گرد و غبار و رطوبت و آلودگی بنشیند به سطح آن رسانا می شود و یک جریان نشتی روی سطح مقره بین هادی و پایه فلزی آن بر قرار می گردد و باعث پایین آمدن ارزش عایقی سطح مقره می شود. لذا اولاً سطح عایق ها را طویل می سازندتا مسیر جریان نشتی طولانی تر شود و ارزش عایقی سطحی زیاد از دست نرود. دیگر آن که سسطح عایق را به صورت چتری می سازند تا باران از آن ریخته شده و ابعاد مقره نیز بزرگ نشود و بالاخره جای خشک هم داشته باشد. شیب چترها باید طوری باشد که روی سطوح هم پتانسیل یعنی عمود بر خطوط میدان بین هادی و میله قرار گیرند. زیرا اگر بین دو نقطه ای که دارای اختلاف پتانسیل باشند ، سطح رسانای ناشی از گرد و غبار تشکیل می شود ، جریان زیادتری جاری شده و جرقه سطحی زودتر زده می شود. انواع مقره ها بر حسب کاربرد این نوع وسیله ، مقره ها را به سه دسته تقسیم می کنند :1. مقره های خطوط هوایی : برای عایق کردن هادی ها نسبت به پایه (دکل) و نسبت به یکدیگر و نگهداری هادی ها بر روی پایه ها از این نوع مقره استفاده می شود.2. مقره های اتکایی : برای عایق کاری باس بارها در پست ها و تابلوها نسبت به زمین و نگهداری آن ها از این نوع مقره ها استفاده می شود.3. مقره های عبوری یا بوشینگ ها : از این نوع مقره ها برای عبور باس بارها از دیواره ها یا ورود به تجهیزات استفاده می شود. همچنین برای ایزوله کردن خطوط یا باس بارها نسبت دیوارها یا بدنه تجهیزات هم به کار می رود.اکنون به توضیح تک تک این نوع مقره ها خواهیم پرداخت . البته درصد بسیار زیادی از مقره های مورد استفاده از نوع مقره های خطوط هوایی می باشد.انواع مقره های خطوط هواییالف) مقره های سوزنی (میخی) :از این مقره ها برای نگهداری خطوط توزیع 11 و 20 و 33 کیلو ولت استفاده می شود که بیشتر به صورت یکپارچه ساخته می شوند و معمولاً به شکل ناقوس کلیسا هستند و هادی خط روی شیار بالایی مقره قرار می گیرد و توسط یک سیستم به مقره محکم می شود. مقره توسط یک پیچ فولادی که در داخل مقره محکم شده است به بازوی دکل بسته می شود. اطراف پیچ فولادی را با فلز نرم مانند سرب یا سیمان پر می کنند تا چینی مقره با فولاد سخت در تماس نباشد و در اثر گشتاور خمشی شکسته نشود.چترهای روی مقره هم به خاطر ایجاد مسیر طولانی و همچنین ایجاد نقاط خشک در هنگام بارندگی و هم لغزان بودن سطح مقره برای باقی نماندن باران بر روی سطح مقره ایجاد می شود. به عبارت دیگر در حالت مرطوب بودن مقره ، فاصله جرقه برابر مجموع کوتاهترین فاصله از لبه یک چتر به نزدیکترین نقطه روی چتر پایینی به اضافه فاصله از لبه چتر پایینی تا پایه فلزی مقره می باشد. همچنین در حالت خشک بودن مقره کوتاهترین فاصله از هادی تا پایه فلزی مقره است. به این منظور ، ضریب اطمینان مقره را به صورت زیر تعریف می کنند.ولتاژ لازم برای جرقه سطحی = ضریب اطمینان مقره ولتاژ نامی نقره در شبکه های 20 کیلو ولت ، ضریب اطمینان هوای خشک مقره های میخی برابر 6 و برای هوای مرطوب به مقدار 4 است. همچنین در شبکه های 11 KV این ضریب در هوای خشک برابر 2/8 و برای هوای مرطوب به مقدار 5 است.ب) مقره های آویزان (در مقره های خطوط هوایی) : در ولتاژهای بالاتر از 50 کیلو ولت که در سیستم های انتقال و فوق توزیع استفاده می شود ، استفاده از مقره های سوزنی به علت نیاز به ضخامت زیادتر و پیچیده تر شدن ساختمان مقره ها و گرانتر شدن و غیر اقتصادی بودن آن ها امکان پذیر نیست. لذا در ولتاژهای بالا از مقره های آویزان می شود و هادی خط به وسیله کلمپ فلزی به پایین ترین مقره بشقابی زنجیره متصل می گردد.هر مقره بشقابی از یک دیک بشقاب از جنس چینی یا شیشه تشکیل شده است که در قسمت بالایی آن ،یک کلاهک چدنی گالوانیزه توسط سیمان مخصوصی به نام Alumina (که مقاومت الکتریکی بالا و از استقامت مکانیکی و چسبندگی بالایی برخوردار است) به شیشه یا چینی متصل شده است و در قیمت پایین مقره نیز یک پین (pin) فولادی گالوانیزه که آن هم به وسیله سیمان مخصوص Alumina به مقره متصل شده است. همچنین مسیر زیر بشقاب ها به صورت چین دار است تا طول مسیر جریان نشتی افزایش یابد. پین فولادی هر مقره در داخل حفره کلاهک مقره پایینی قرار گرفته و با زدن گیره اطمینان ( اشپیل Split-Pin ). حفره : کلاهک از سوراخ ریز مقابل آن اتصال پین و کلاهک محکم می شود. دو مقره ضمن اتصال محکم به مقره در محل اتصال به صورت لولایی حرکت آزادانه هم دارند. قطر بشقاب های این نوع مقره ها معمولاً بین 150 تا 360 میلیمتر و یا بیشتر می باشد . استقامت مکانیکی آن ها هم معمولاً بین 40 تا 300 کیلو نیوتن می باشد.مزایای استفاده از مقره های بشقابی را می توان به صورت زیر بیان نمود :1. چون هر واحد مقره بشقابی برای یک ولتاژ نامی پایینی (در حدود 11 کیلو ولت) طراحی می شود. متناسب با ولتاژ خط می توان به تعداد دلخواه از این بشقاب ها را به هم متصل نمود تا یک زنجیره آن بتواند ولتاژ خط را تحمل کند (قابلیت انتخاب تعداد بشقاب ها).2. اگر هر کدام از بشقاب های یک زنجیره مقره آویزان ، معیوب یا صدمه ببیند فقط لازم است همان یک بشقاب عوض شود و نیازی به تعویض کل زنجیره نیست (اقتصادی بودن مقره).3. چون زنجیره مقره به کراس آرم خط آویزان است و می تواند به صورت آزادانه حرکت نماید ، حداقل فشار مکانیکی بر مقره های آویزان وارد می شود (تنش های مکانیکی کمتری به مقره وارد می شود).4. اگر به دلیلی بخواهند ولتاژ نامی خط را افزایش دهند به راحتی می توان با اضافه نمودن چند تا بشقاب ، قدرت عایقی مناسب را به دست آورد و نیازی به تعویض زنجیره مقره نیست (قابلیت انعطاف در افزایش ولتاژ خط).5. چونهادی خط به زنجیره آویزان می گردد و پایین تر از بازوی کراس آرم (صلیبی) دکل خط انتقال قرار می گیرد در نتیجه هنگام برخورد صاعقه به خط ، صاعقه ابتدا به بازوی کراس آرم خط برخورد می نماید تا حدود زیادی از خط حفاظت می شود (حفاظت خط در برابر صاعقه به وسیله بازوی کراس آرم دکل انجام می شود).6. اگر بار مکانیکی خط زیاد باشد مثلاً : در اسپن های بلند ، هنگام عبور خطوط انتقال از روی رودخانه ها ، دره ها ، اتوبان ها می توان از زنجیره های دوبل یا بیشتر استفاده نمود (قابلیت استفاده از زنجیره های دوبل یا بیشتر). ب) مقره های سنتی : مقره های کششی در جاهایی که نیروی کشش افقی زیادی به مقره وارد می شود استفاده می گردد. از این مقره ها در پایه های ابتدا و انتهایی خطوط انتقال ، توزیع و در پایه هایی که در مسیر خط از حالت مستقیم خارج شده و یا نسبت به افق ، زاویه پیدا می کنند ، استفاده می شوند. مقره های مذکور همان مقره های بشقابی هستند که به صورت افقی نسب می شوند و باید بیوری کششی خط را در پایه ها تحمل نمایند و چون نیروی زیادتری را باید تحمل کنند فقط استقامت مکانیکی آن ها نسبت به مقره های آویزان بیشتر است. د) مقره های مهار : در خطوط توزیع برای پایه هایی که در ابتدا و انتهای خط قرار می گیرند و یا برای پایه هایی قرار گرفته در زاویه برای خنثی کردن نیروی کششی که از یک طرف به پایه وارد می شود از سیم مهار استفاده می شود. این سیم مهار از یک طرف به رأس تیر محکم می شود و از طرف دیگر به وسیله مهار و صفحه مهار در داخل زمین محکم می شود.برای ایمنی و حفاظت بیشتر که احتمالاً سیم مهار در بالا از طریق میلگرد تیر برق دار گردید ، سیم مهار در نزدیکی زمین برقدار نشود ، در وسط سیم مهار از مقره مهار استفاده می شود و سیم های مهار از دو طرف به مقره مهار متصل می شود. این مقره به گونه ای است که اگر شکسته شود ، سیم مهار رها نمی شود و البته بایستی تحمل نیروی کششی سیم مهار را داشته باشند. ﻫ )مقره های استوانه ای : این مقره ها به صورت یک زنجیره استوانه ای و به صورت یکپارچه از جنس چینی یا اخیراً از مواد ترکیبی (که استقامت مکانیکی بسیار بالایی داشته و آب بر روی سطح آن ها پخش نمی شود و برای مناطق صحرایی مناسب هستند) ساخته می شوند و به دو طرف انتهایی آن ها دو کلاهک فلزی با سیمان مخصوص اتصال داده شده است. قطر استوانه عایق متناسب با قطر مکانیکی نیاز انتخاب می شود. از این مقره بعضاً در خطوط انتقال استفاده می شود. این مقره ها در مقایسه مقره های آویزان بشقابی از وزن بسیار کمتری برخوردارند (وزن مقره های اویزان دریک زنجیره بیشتر به خاطر وزن کلاهک های فلزی آن است) و لذا از نظر اقتصادی ارزان تر هستند. ولی نقطه ضعف اصلی آن ها امکان خراب شدن کامل مقره در اثر یک قوس الکتریکی یا ضربه مکانیکی بیرونی بر آن است. در صورتی که در مقره های بشقابی تمام زنجیره از بین نمی رود. در زنجیره های بشقابی اگر یک مقره دچار ترک شود تا مدت زیادی بقیه آن ها می توانند ولتاژ خط را تحمل کنند و همچنین بار مکانیکی خط را تحمل نمایند.در ولتاژهای بالا می توان دو یا سه مقره استوانه ای را به هم متصل نمود. نوع ساخته شده از مواد ترکیبی (Composite Material) این نوع مقره ها دارای خاصیت آب گریزی بوده و آب و آلودگی بر روی سطح مقره پخش نمی شود ، بلکه این آلودگی و رطوبت در یک نقطه روی سطح باقی می ماند و چون تمام سطح مرطوب نمی شود ، می توان مسیر خزشی آن را کوتاه نمود. جریان نشتی این نوع مقره ها خیلی کم است و در مناطق با آلودگی زیاد روی سطح آن ها جرقه زده نمی شود و نیازی به تمیز کردن هم ندارند. این مقره ها ضمن داشتن استقامت مکانیکی بالا از وزن بسیار کمی نیز برخوردارند.مقره های مخصوصبرای مناطق با شرایط آب و هوایی بسیار بد مانند مناطقی که آلودگی صنعتی یا آلودگی آب و هوایی بیش از حد معمول وجود دارد یا مناطقی که مه زیاد وجود دارد یا مناطقی که صاعقه های خطرناک با شیب زیاد وجود دارد ، از مقره های استاندارد معمولی نمی توان استفاده نمود و باید از مقره های با طراحی خاص برای آن مناطق استفاده نمود و باید از مقره های با طراحی خاص برای ان مناطق استفاده نمود. در این نوع مقره ها معمولاً از بشقاب های گودتر استفاده می کنند و داخل بشقاب گود ، چترهای بلندتری به آن داده می شود. در نتیجه فاصله خزش مقره افزایش می یابد و جریان نشتی آن به دلیل طولانی تر شدن مسیر و بزرگ شدن مقاومت سطحی کاهش یافته و دیرتر جرقه سطحی زده می شود (به خاطر آلودگی و رطوبت). همچنین سطح مقره را پر شیب می سازند تا در اثر باران سطح آن به راحتی تمیزتر شود. ز) مقره چرخی : از این مقره ها در خطوط فشار ضعیف 400 ولت استفاده می شود. این مقره ها توسط تسمه فلزی U شکل به نام اتریه و پین واشپیل به پایه های خطوط توزیع هوایی بسته می شوند و سیم هوایی شبکه بر روی شیار چرخی مانند مقره قرار می گیرد و از آن به عنوان مقره کششی نیز استفاده می شود و در دو نوع یک شیاری و دو شیاری استفاده می شود.مقره های اتکایی این مقره ها برای نگهداشتن شین های فشار قوی و دیگر تجهیزات به کار برده می شوند. این مقره ها به شکل استوانه ای چینی توپر یا توخالی ساخته می شوند که برای تأسیساتی که مقره باید نیروی مکانیکی بیشتری را تحمل کند از نوع توخالی آن استفاده می شود. زیرا نوع توپر آن فقط با یک قطر معین و محدودی قابل ساخت است ولی برای افزایش استقامت الکتریکی نوع توخالی آن سوراخ داخل مقره ها به صورت افقی یا عمودی نصب می شوند. مقره های عبوری (بوشینگ ها) برای سرهای خروجی و ورودی دستگاه های فشار قوی ، برای جلوگیری از ایجاد جرقه بین ولتاژ آن خط عبوری و بدنه دستگاه به کار می روند (مثل بوشینگ ترانس ها). این مقره ها به صورت لایه های استوانه ای به کار می روند و نسبت به محیط مورد استفاده ، شکل مقره های عبوری متفاوت است. ساده ترین آن ها استوانه های درهم است. فضای داخل این استوانه های مابقی ، معمولاً توسطگازها یا مایع های عایق پر می شود. در ترانسفورماتورها ، بوشینگ ها حاوی روغن هستند. ارتفاع آن ها برحسب میزان ولتاژ و ارتفاع از زمین متفاوت است. به منظور جلوگیری از ازدیاد حرارت در بوشینگ ها از فیبرهای عایقی در سر بوشینگ ها استفاده می شود زیرا فیبر هدایت حرارتی بهتری نسبت به چنین دارد. آزمایش مقره های خطوط هوایی به طور کلی سه دسته آزمایش بر روی مقره ها انجام می گیرد :1. Type Test : که فقط روی سه عدد مقره انجام می گیرد و صرفاً به خاطر بررسی مشخصات الکتریکی یک مقره است که اساساً بستگی به شکل مقره و جنس و ابعاد آن به طور کلی به طراحی مقره بستگی دارد. این آزمایش ها را فقط یک بار برای تأیید صحت طراحی مقره ها و مقایسه نتایج حاصل با مقادیر تعیین شده توسط استانداردها انجام می دهند. به این آزمایش ها ، آزمایش های تخلیه یا آزمایش های جرقه نیز می گویند (Flashover Test).2. Sample Test (آزمایش های نمونه) : این آزمایش ها بر روی تعدادی از مقره ها که به صورت کاملاً اتفاقی انتخاب می شوند ، انجام می گیرد و به منظور بررسی مشخصات مقره و کیفیت موارد مورد استفاده در آن ها است و در حقیقت معیاری برای پذیرش کیفیت مقره های تولیدی یک تولید کننده است.3. Routine Test (آزمایش های سری) : این آزمایش ها بر روی تک تک تمام مقره های تولید شده در خط تولید شده در خط انجام می گیرد و به منظور خارج شدن مقره هایی که احتمالاً در جریان ساختن آن اشکالی به وجود آمده می باشد. بدین طریق مقره های کاملاً معیوب از خط تولید خارج می شوند. Type Test بر طبق استاندارد بین المللی IECگروه اول آزمایش ها شامل آزمایش های زیر است :1. آزمایش استقامت در برابر ولتاژ ضربه ای ، صاعقه در هوای خشک : این آزمایش در دو حالت انجام می شود :الف) با موج ضربه ای مقاوم : برای هر مقره ای حداکثر دامنه موج ضربه ای استاندارد (که برای امواج صاعقه مدل می شود) باعث ایجاد جرقه بر روی سطح مقره نمی شود را استاندارد مشخص کرده است. البته مقادیر برای شرایط جوی استاندارد داده می شود. حالا اگر شرایط آزمایش از نظر فشار و درجه حرارت و میزان رطوبت متفاوت با شرایط استاندارد باشد ، باید مقادیر فوق را تصحیح نمود. در این آزمایش 15 بار موج ضربه ای استاندارد 1.2/50 μsec به مقره به دفعات متوالی اعمال می شود. فاصله زمانی بین هر بار باید به اندازه کافی باشد تا اثر قبلی از بین رود. دامنه موج ضربه ای همان مقدار مشخص شده در استانداردها با ضریب تصحیح مربوطه است. اگر این آزمایش در هیچ دفعه ای جرقه سطحی روی مقره زده نشود یا تعداد دفعات جرقه سطحی کمتر از 2 بار باشد و سطح مقره ها آسیب کلی نبیند. این آزمایش جواب مثبت داده است. البته اثر جزئی جرقه روی سطح مقره (مثل خش انداختن) مجاز است.ب) با موج ضربه ای با احتمال 50 % جرقه سطحی : دامنه موج ضربه ای استاندارد که با احتمال 50% بر روی سطح مقره جرقه زده می شود در استانداردها مشخص شده است. حالا برای یک مقره مورد آزمایش ، یک موج ضربه ای استاندارد با دامنه Vk نزدیک به سطح تقریبی دامنه ولتاژ جرقه 50% انتخاب می شود. همچنین یک دامنه متغیر ولتاژ ΔV که تقریباً 3% از ولتاژ V است ، انتخاب می گردد. حالا یک موج ضربه ای استاندارد با دامنه VK به مقره اعمال می شود. اگر این موج سبب بروز جرقه سطحی روی مقره نگردید ، دامنه موج ضربه ای بعدی باید Vk + ΔV انتخاب شود که اگر حدود 30 بار و چون ممکن است Vk اولیه خیلی کوچک یا خیلی بزرگ انتخاب شده باشد ، 1 تا 9 آزمایش اول را 30 بار محسوب نمی کنند. اگر هر ولتاژ UV در این آزمایش nV بار تکرار شده باشد ، ولتاژ جرقه سطحی 50% از رابطه زیر بدست می آید :∑nVUV 30مقره به شرطی این قسمت را جواب می دهد که 50%U بدست آمده از رابطه بالا برای آن از 04/1 برابر ولتاژ جرقه مقاوم آن کمتر نباشد و مقره ها در اثر جرقه ای سطحی روی آن ها آسیب کلی نبیند.2. آزمایش استقامت در برابر ولتاژ ضربه ای سوئچینگ در هوای مرطوب :موج ضربه ای برای مدل کردن سوئچینگ ، یک موج ضربه ای 250/2500μsec است که با موج ضربه ای صاعقه متفاوت است و زمان رسیدن به یک مقدار یک و نیم موج پشت آن خیلی بیشتر از موج ضربه ای صاعقه می باشد. در این حالت مقره تحت آزمایش ، زیر بارش یک باران مصنوعی قرار می گیرد. شدت بارش باران باید حداقل بین 1 میلیمتر بر دقیقه تا 2 میلیمتر بر دقیقه باشد و به صورت مورب با زاویه °45 بارش نماید. درجه حرارت محیط هم بین c°15- تا c°15 باشد و مقاومت مخصوص آن در c°20 باید – m Ω 15±100 باشد.مقره باید به مدت 15 دقیقه قبل از شروع تست تحت بارش این باران قرار گیرد ، البته این زمان می تواند کمتر هم باشد ، مخصوصاً زمانی که تست های متوالی انجام می گیرد. در این جا نیز این آزمایش در دو حالت مختلف می تواند انجام بگیرد :الف) با موج ضربه ای با احتمال 50% جرقه سطحی : طریقه آزمایش مانند حالت هوای خشک است (با موج ضربه ای صاعقه) ولی دامنه موج ضربه ای 50% بدست آمده از رابطه نباید کمتر از 085/1 برابر دامنه موج ضربه ای مقاوم تعیین شده در استاندارد برای موج ضربه ای مقاوم تعیین شده در استاندارد مربوط به شرایط جوی استاندارد است که برای شرایط آزمایشگاهی باید در ضرایب تصحیحی ، اصلاح شود.ب) با موج ضربه ای مقاوم : این آزمایش نیز با دامنه موج ضربه ای مقاوم تعیین شده در استاندارد برای 15 بار تکرار می شود و اگر تعداد دفعاتی که جرقه سطحی روی مقره زده می شود بیشتر از 2 بار نباشد این ازمایش جواب مثبت داده است. در این آزمایش نیز نباید سطح مقره ها آسیب کلی ببیند (اثرهای جزئی روی سطح مقره قابل پذیش است).3. آزمایش استقامت در برابر ولتاژ با فرکانس صنعتی در هوای مرطوب Wet Power – Freuency Testدراین لحظه مقره نیز تحت آزمایش در یک شرایط باران مصنوعیمانند حالت قبل قرار می گیرد. متناسب با شرایط جوی زمان آزمایش از نظر فشار و درجه حرارت ، مقدار ولتاژ قابل استفاده مقره را بر اساس مقدار تعیین شده آن در استانداردها بدست می آوریم (با استفاده از ضرایب تصحیح). سپس یک ولتاژ در حدود 75% ولتاژ فوق را به مقره اعمال می کنیم و سپس به تدریج و به آرامی با یک شیب در حدود 2% ولتاژ فوق بر ثانیه ، ولتاژ را افزایش می دهیم تا به مقدار 100% فوق برسد. سپس این ولتاژ را در حدو یک دقیقه بر روی مقره نگه می داریم. طی این آزمایش هیچ گونه جرقه سطحی یا سوراخ شدن مقره نباید اتفاق بیفتد. دراین آزمایش می توان افزایش ولتاژ را هنوز ادامه دهیم تا جرقه سطحی حاصل شود. این آزمایش را 5 بار تکرار می کنیم و مقدار متوسط ولتاژهای جرقه سطحی را به عنوان ولتاژ جرقه هوای مرطوب در ولتاژ سینوسی با فرکانس های صنعتی تعیین کنیم. فرکانس موج سینوسی باید بین 15kv تا 100kv باشد.هر واحد مقره ، نام تولید کننده و سال تولید آن نوشته می شود. همچنین حداکثر قدرت مکانیکی مقره نیز بر روی آن نوشته می شود. مثلاً U300 مقره 300 کیلونیوتنی است. شرایط استاندارد به صورت T = 20°c وP = 760mmHy رطوبت 119 water/m3 = است. قبل از پرداختن به آزمایش هایی که بر روی مقره های نمونه انجام می گیرد ، ساختمان مقره ها را بیان می کنیم ، که به دو دسته تقسیم می شوند :1. نوع A : مقره هایی که طول یا ضخامت کوتاهترین مسیر موجود در داخل آن ها برای سوراخ شدن داخل بدنه مقره حداقل برابر با نصف طول کوتاهترین مسیر جرقه در هوای روی سطح مقره است.2. نوع B : مقره هایی که ضخامت داخل آن ها برای مسیر سوراخ شدن مقره کمتر از نصف طول کوتاهترین مسیر جرقه بر روی سطح مقره در هوا است.آزمایش های روی مقره های نمونه طبق استاندارد (Sample Test) IEC  برای یک محموله ای از مقره های یک نوع با مشخصات یکسان از همه نظر که به وسیله خریدار از تولید کننده مقره خریداری می شود. تعدادی مقره به صورت کاملاً اتفاقی و تصادفی از بین محموله آماده انتخاب می شود و تعدادی آزمایش روی نمونه های انتخابی انجام می شود. در صورتی که نتایج آزمایش ها مثبت باشند ، کیفیت محصول آن ها از طرف خریدار تأیید می شود. تعداد نمونه های انتخابی بر اساس استاندارد IEC به صورت زیر است:با فرض P تعداد مقره های انتخابی به عنوان نمونه و N تعداد کل مقره ها باشد ، آنگاه :1) اگر N < 500 باشد ، P با توافق طرفین تعیین می شود.2) اگر 500 < N < 2000 باشد P = 4 + (1/5N ÷ 1000) است.3) اگر N > 20000 باشد ، P = 14 + (0/75N ÷ 1000) است. آزمایش هایی که بر روی مقره های نمونه انتخاب شده انجام می گیرند ، عبارتند از :1- بررسی سیستم قفل و بست.2- کنترل مقدار وزن مقره ها و ابعاد قسمت های مختلف آن ها.3- آزمایش سیکل حرارتی.4- آزمایش حداکثر تحمل بار الکترومکانیکی (فقط روی مقره های شیشه ای).5- آزمایش حداکثر تحمل بار مکانیکی.6- آزمایش شوک حرارتی (فقط برای مقره های شیشه ای).7- آزمایش تحمل ولتاژ در برابر سوراخ شدن (فقط برای مقره های نوع B).8- آزمایش تخلخل (وجود حفره) (فقط برای مقره های چینی).9- آزمایش میزان گالوانیزه بودن قسمت های فلزی مقره. مقره های نمونه انتخاب شده را طبق استاندارد IEC به دو گروه تقسیم می کنند : گره اول شامل دو سوم تعداد مقره های انتخاب شده و گروه دوم شامل یک سوم تعداد مقره های انتخاب شده است. بر اساس نوع A یا B مقره ها و نوع بشقابی یا اتکایی ، آزمایش های نمونه فوق تعدادی بر روی گروه اول و تعدادی بر روی هر دو گروه انجام می شود.   مقره هایی که بر روی آن ها آزمایش های نمونه صورت می گیرد نباید در سرویس از آن ها استفاده شود.شرح آزمایش 1- بررسی سیستم قفل و بست : در این جا چند آزمایش مختلف برای اطمینان از مکانیزم قفل و بست انجام می گیرد :الف) با اتصال بشقاب ها به همدیگر و تشکیل یک یا چند زنجیره ، خرکت های افقی شبیه به حرکت هایی که در حالت سرویس ممکن است پیدا شود به آن ها داده می شود که اتصال زنجیره ها باید باز شود.ب) اشپیل (Split – Pin) تمام بشقاب ها در موقعیت قفل قرار داده می شود و به وسیله یک دستگاه که نیروی کششی وارد می کنند بار کششی برای حرکت کردن اشپیل هر بشقاب اعمال می شود. برای هر بشقاب این عمل 3 بار تکرار می شود. مقدار این نیرو طبق استاندارد ، بین 50 تا 500 نیوتن بایستی اعمال شود.ج) هشپیل هر مقره یا نیروی کششی حداکثر یعنی 500N کشیده می شود (به وسیله دستگاه کشنده). اشپیل ها در اثر این نیرو نباید از محل قفل به طور کامل خارج شوند.2- کنترل ابعاد مقره (Verification Of Dimensions) :این کنترل ابعاد عبارتند از :الف) اندازه گیری وزن مقره های نمونه و متوسط گیری به عنوان وزن مقره.ب) اندازه گیری قطر خارجی مقره از بالاترین تا پایین ترین نقطه.ج) اندازه گیری ارتفاع مقره از بالاترین تا پایین ترین نقطه.د) اندازه گیری فاصله خزشی مقره ( Creep Age Distance ).ﻫ) کنترل قطر حفره کلاهک و قطر پین فلزی مقره با اشل های استاندارد (اشل هایی که باید داخل حفره بروند یا از قطر پین بگذرند و اشل هایی که نباید بگذرند).3- آزمایش سیکل حرارتی ( Temperature Cycle Test )در این آزمایش یک مخزن آب سرد و یک مخزن آب گرم تهیه می شود. درجه حرارت مخزن آب گرم باید 70°c بیشتر از درجه حرارت مخزن آب سرد باشد و به وسیله یک سیستم اتوماتیک ، درجه حرارت مخزن ها ثابت نگه داشته شوند. مقره های نمونه به مدت T دقیقه در مخزن آب گرم قرار داده می شوند.Aمقره نوع T = 15 + 0/7 m , m = kgجرم مقره بر حسبBمقره نوع T = 15 minبعد از طی زمان فوق ، سریعاً بدون هیچ تأخیری (حداکثر تأخیر 30 ثانیه) و برای مدت زمان T دقیقه نیز در مخزن آب سرد غوطه ور می شوند. این سیکل گرما و سرما 3 بار تکرار می شود. برای مقره های اتکایی به جاب مخزن آب سرد ، باید آن را بعد از خارج کردن از مخزن آب گرم (برای مدت 15 دقیقه در مخزن آب گرم قرار گرفته است) به مدت 15 دقیقه در معرض باران مصنوعی با شدت 3 میلیمتر بر دقیقه قرار می دهیم و این سیکل را 3 بار تکرار می کنیم.شرط پذیرش این آزمایش این است که در پایان هیچ یک از مقره های نمونه ترک خوردگی پیدا نکرده باشند.4- آزمایش تحمل بار الکترومکانیکی ( Electromechanical Failing Load Test) در این آزمایش همزمان با اعمال ولتاژ با فرکانس صنعتی به مقره یک بار مکانیکی کششی نیز به مقره اعمال می شود تا اگر تخلیه الکتریکی داخلی در اثر تخلیه های داخل مقره اتفاق می افتد ، در اثر نیروی کششی اعمال شده به صورت عیب مکانیکی (مثلاً ترک خوردن مقره) مشخص می شود. ولتاژ اعمالی به مقره همان ولتاژ مقاوم با فرکانس صنعتی در هوای مرطوب است. چون در مقره های شیشه ای تخلیه های موضعی داخل مقره کاملاً پیدا است ، لذا این آزمایش برای مقره های شیشه ای انجام نمی شود.5- آزمایش تحمل حداکثر بار مکانیکی ( Mechanical Failing Load Test )در این آزمایش مقره نمونه ، تک تک و به نوبت در داخل دستگاه مخصوص اعمال نیروی کششی قرارگرفته و نیروی کششی اعمالی به آن ها از صفر به طور سریع به مقدار 75% حداکثر تحمل بار مکانیکی نامی مقره افزایش داده می شود. سپس به آرامی در یک مدت زمان معین بین 15 تا 45 ثانیه بار کششی اعمالی را به 100% حداکثر بار مکانیکی می رسانیم. شدت این افزایش به مقدار 35% حداکثر بار مکانیکی نامی در هر دقیقه می باشد.


+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:40  توسط 66  | 

 
توصيه هاي ايمني براي مقابله با برق گرفتگي
1. در تعميرات لوازم برقي از افراد مجاز استفاده نماييد
2. پريزهاي برق را با در پوش ايمني محافظت نماييد تا بچه ها آسيب نبينند
3. با دست مرطوب و خيس به اجزاء برق مثل پريز  كليد دست نزنيد
4. در موقع آتش سوزي لوازم الكتريكي مثل كامپيوتر سعي شود يك كپسول 2 كيلو گرمي دي اكسيد كربن در منزل باشد و هميشه بخاطر داشته باشيد در اطفاء حريق لوازم برقي اول قطع و سپس اقدام به اطفاء حريق شود ومناسب ترين وسيله كپسول گاز منواكسيد كربن مي باشد
5. هميشه از لوازم برقي خانه در زمان هاي مختص بازديد و وضعيت روكش سيم ها  دو شاخه را بازديد و رفع نقص نماييد
6. در موقع استفاده تجهيزات سيار  سيم هاي سخت و ارتباط هاي سيم را بطور زياد مراقبت نماييد  از دو شاخه و رابط هاي نو و مادگير براي افزايش طول استفاده نماييد  در ضمن خطر زدگي سيم و ضربات مكانيكي را نيز در نظر داشته باشيد
7. در موقع خارج كردن سيم وسيله برقي هميشه دو شاخه مربوطه را از پريز جدا كنيد و هيچ وقت سيم را نكشيد چون خطر جدا شدن اتصال و خطرات بعدي وجود دارد


8. وسايلي مثل تلويزيون بدليل خطر و وسايلي كه با آب ارتباط دارند مثل سماور برقي  كولر  ماشين لباسشويي
9. در شوفاژ خانه به دليل سيم كشي هاي غير اصولي كه امكان دارد در كف زمين احداث شده باشد و بدليل وضعيت مرطوب و لوله  آب   هميشه در تعميرات خطر برق گرفتگي براي افراد وجود دارد مراقبت کامل نماييد
10. از سه شاخه براي دستگاههاي پر مصرف استفاده نكنيد خطر گرم شدن محل اتصال و مسايل آتش سوزي وجد دارد
11. در مواقعي كه احتمال انتشار گاز در آشپزخانه است از قطع و وصل كليد خودداري نماييد
12. ابزاري مثل دريل خطرات متعددي دارد مثل وضعيت چرخشي در صورت درگيرشدن با شال گردن يا امثالهم و حتي موي سر و حادثه جدي ايجاد نماييد  در ضمن خطر ديگر مته كردن است كه امكان دارد در مسير سيم برق باشد  مشكل بعدي شكسته شدن نوك مته است كه بر اثر عدم مهارت و استفاده صحيح از مته بخصوص شكسته مي شود
13. در موقع تعويض لامپ سوخته بعلت استفاده از نردبان يا صندلي نا مناسب و احتمال  وجود برق هميشه خطر سقوط وجود دارد اين مسئله را جدي بگيريد
14. در مواقع آتش سوزي توجه نماييد آسانسور وسيله مناسبي جهت جابجايي نيست
15. در موقع استفاده از وسائل الكتريكي گرما ساز بخاري هميشه خطر داغ شدن دو شاخه   وسايل مجاور بخاري را در نظر داشته باشيد
16. داشتن ترمينال جعبه تقسيم لوازم مجهز به چندين كليد مينياتور مناسب در محل آشپزخانه كار مناسبي است كه در صورت اتصال فورا قطع شده امكان تغييرات لوازم برقي در حالت برق را مهيا مي سازد

ايمني در مورد تعمييرات و احداث بناي ساختمان
1-  در موقع حفاري و گود برداري بخصوص در قسمتهاي پياده رو مراقبت نماييد كه كابلهاي زير زميني آسيب نبينند
2-جهت كارهاي ساختماني كه احتياج به برق دارد مراقبت نماييد   عوامل ساختماني به تجهيزات برق استفاده غير مجاز و دستكاري نكنند چون در هر صورت شما به عنوان كارفرما در مقابل افراد و اداره مسئول هستيد
3- مسئله حريم سيمهاي برق را جدي بگيريد   چون حوادث منجر به فوت و قطع عضو   بسياري بر اثر اين بي توجهي   اتفاق افتاده است  قبل از زدن داربست و مواردي كه ايجاد خطر دارد حتما با اداره برق منطقه هماهنگ باشيد
4- در عمليات ساختماني مراقبت نماييد كه اشياء فلزي از طبقات به سيم هاي برق برخورد نكند  همچنين اشياو فلزي از بالا و پايين پرتاب نكنيددر حريم سيم هاي برق
5- در زير خطوط فشار قوي اقدام به احداث بنا نكنيد  خطر سرطان بچه ها را تهديد خواهد كرد

ايمني در مورد لوازم اندازه گيري (كنتور)
1- محل كنتور از آسيب هاي مكانيكي و رطوبت حفظ شود
2- فيوزهاي كنتور نبايد دستكاري و اگر نوع فيوز فشنگي است در موقع قطع از سيم با قطر بيشتر يا لوازم ديگري استفاده شود
3- دقت نماييد وقتي فيوز پاي كنتور را قطع مي كنيد   آيا با فازمتر در پريز آزمايش مي شود  فاز متر روشن نمي شود
4- هرگونه دستكاري كنتور و باز كردن پلمپ كنتور تخلف محسوب مي شود
5- محل نصب كنتور برق و كنتور گاز بايستي از يكديگر فاصله مناسب داشته باشند
6- اگر در پايه فيوز بر اثر حرارت داغ و ايجاد جرقه نمود   فورا با احتياط فيوز را باز كرده و به اداره حوادث منطقه جهت اصلاح اطلاع دهيد در اين گونه مواقع معمولا فيوز برداشته و موقتا برق يكسره شده و بايستي در وقت اداري به منطقه مراجعه تا بطور اساسي مشكل اصلاح شود
7- جهت كارهاي جوشكاري به دليل ايجاد نوسان ولتاژ برق از كنتور برق استفاده ننماييد
8- در مواقع ساخت و ساز كه احتياج به تغيير محل كنتور مي باشد  قبل از اقدام به تخريب منطقه برق مراجعه و درخواست جابجائي انشعاب بدهيد
9- با دست مرطوب و خيس به فيوز پاي كنتور دست نزنيد
10- در موقع نظافت در پاركينگ مراقبت نماييد تا آب به تجهيزات برقي و كنتور پاشيده نشود
11- اگر ولتاژ برق شديدا كم شدفورا پريز لوازم برقي را خارج و به منطقه برق خود اطلاع دهيد
12- اگر در قطع برق اقدام به گرفتن برق اضطراري از موتور هاي بنزيني يا گازوييلي مي كنيد، شديدا مراقبت نماييدتا برق اضطراري به شبكه وارد نشود تمامي تمهيدات لازم را در نظر بگيريد
13- بعد از قطع برق و وصل مجدد اگر پريزهاي برق را خارج كرده ايد   كليد هاي آن قطع و به تدريج وارد مدار نماييد
14- در صورتيكه بر اثر نقصي در برق به وسايل الكتريكي شما آسيبي برسد، مراتب را كتبا و شفاهي به منطقه برق اطلاع دهيد  خاطر نشان گردد تعميرات باري توسط مراكز مجاز و كاملا فاكتورها دقيق و در صورت امكان علت عيب ذكر شود  البته كارشناسان اداره برق موضوع را بررسي و در صورت  محق بودن مشترك طبق مقررات انجام مي شود
15- در مواقع طوفان و رعد و برق بهتر است لوازم برقي حساس مثل تلويزيون   يخچال، كامپيوتر را خاموش و از پريز جدا نماييد
16- فيوز پاي كنتور را نبايد افزايش آمپر داد
17- نمراتور كنتور را مراقبت نماييد كه بي حركت نباشد و مراتب را در اين صورت به برق منطقه خود اطلاع دهيد
حريم شبکه 20 كيلو ولت و فشار ضعيف
حريم الکتريکي سيم هاي برق فشار ضعيف از ساختمان و اسکلتها 30/1 متر است و در جاييکه فاصله کافي نيست در مورد فشار ضعيف از سيم روپوش دار استفاده مي شود
حريم الکتريکي سيم هاي برق 20 كيلو ولت از ساختمان و اسکلتها 3 متر است که در داخل شهر ها با 30درصد تخفيف حداقل 10/2متر مي باشد




ايمني در برابر برق
توصيه هاي ايمني
- از دست زدن به بدنه فلزي تاسيسات برقي نظير تابلوهاي برق، پايه هاي فلزي، تسمه هاي متصل به بدنه پايه ها وسيمهاي مهار، جدا خودداري نمائيد.
- صعود از پايه هاي برق خطر سقوط و همچنين برق گرفتگي دارد. به هيچ عنوان مبادرت به صعود از پايه هاي برق ننمائيد.
- از پرتاب اشياء فلزي روي سيمهاي شبكه توسط كودكان جلوگيري نمائيد.
- در صورتيكه درب تابلوهاي برق به هر دليل باز باشد مراتب را به اداره برق اطلاع دهيد و از دست زدن به تجهيزات داخل تابلوهاي برق اكيدا خودداري فرمائيد.
- در صورتيكه سيمهاي شبكه برق بدليل پارگي روي زمين افتاده باشد، ضمن جلوگيري از نزديك شدن افراد به محل و دست زدن به سيم برق، مراتب را سريعا به اداره برق اطلاع دهيد.
- از نصب آنتن با ارتفاع زياد در نزديك شبكه برق بخصوص خطوط 20 كيلوولت خودداري فرمائيد، زيرا در اثر طوفان و يا هر حادثه ديگر روي سيم باعث سوختن تلويزيون و بروز آتش سوزي و برق گرفتگي در منزل خواهد شد.
- از پرتاب سنگ و شكستن مقره هاي شبكه هاي برق و لامپهاي روشنايي معابر توسط كودكان و ساير افراد جلوگيري نمائيد.
- در صورت عدم اطلاع از تعمير و تعويض وسايل برقي حتما به افراد مطلع و اهل فن مراجعه نمائيد.
- وسايل برقي را دور از دسترس كودكان قرار داده و از نصب پريز در ارتفاع پائين خودداري فرمائيد.
- از دستكاري كنتور و كليدهاي مينياتوري استانداردي كه توسط مامورين برق پلمپ ميگردد، خودداري نمائيد.
- هنگام شستشوي ديوارها مراقب باشيد كليدها و پريزها خيس نشوند، زيرا خطر برق گرفتگي وجود دارد. همچنين با دست خيس و پاي برهنه هيچگاه به لوازم برقي دست نزنيد.
- عبور سيم برق و سيم زنگ از لابلاي درب فلزي منزل موجب مي شود كه در صورت لخت شدن سيم، درب برقدار شده و باعث برق گرفتگي گردد.




نحوه استفاده صحيح از برق
- استفاده غير مجاز از برق علاوه بر پرداخت جرايم، خطرات جاني و مالي به دنبال خواهد داشت.
- در صورت بروز اتصالي و ايجاد جرقه در فاصله بين كنتور و شبكه برق فورا فيوز يا كليد مينياتوري را قطع نموده و مراتب را به اتفاقات برق در منطقه خود گزارش نمائيد.
- شماره تلفن اتفاقات برق در منطقه خود را هميشه به خاطر داشته باشيد.
- از بستن وسايل مختلف به تيرهاي برق جدا خودداري نمائيد.
- فيوزها تنها وسيله حفاظتي منزل شما هستند، از دستكاري آنها خودداري نمائيد.
- نصب رله هاي حفاظتي شما را از داشتن فيوز بي نياز نمي سازد.
- از بكار گيري ترانسهاي جوشكاري در منزل خودداري فرمائيد، زيرا ضمن صدمه ديدن كنتور و پرداخت هزينه باعث ايجاد نوسانات برق و آسيب رساندن به لوازم برقي خواهد شد. خواهشمند است در صورت مشاهده به اتفاقات برق اطلاع دهيد.
- از بكار گيري لوازم برقي پرمصرف مانند اتو، بخاري برقي، جاروبرقي، لباسشويي و غيره در پيك بار شبكه (ساعات اوليه شب ) خودداري نمائيد، زيرا در اين ساعات بيشترين كاهش ولتاژ در شبكه به چشم مي خورد كه از جمله عوامل عمده كم شدن عمر دستگاههاي برقي كه با موتور كار مي كنند، مي باشد.
- قبل از اينكه وسايل برقي را به برق وصل نمائيد دوشاخه و سيم ارتباطي آن را از نظر سالم بودن كنترل نموده، ابتدا كليد آن را در حالت قطع قرار داده سپس وسيله را به برق متصل نمائيد.
- هنگام قطع برق دوشاخه وسايل برقي نظير يخچال و فريزر را از پريز خارج نموده و موقع وصل مجدد برق پس از حداقل 4 دقيقه اين وسايل را به برق متصل نمائيد..

اقدامات اوليه هنگام برق گرفتگي
در موقع برق گرفتگي ياري دهنده ضمن خونسردي بايد بي درنگ اقدامات
ذيل را انجام دهد، زيرا در نجات مصدوم ثانيه ها نيز ارزش دارند:
- در اولين فرصت جريان برق را از نزديكترين راه قطع نمائيد.
- اگر امكان قطع جريان برق به راحتي امكانپذير نمي باشد با استفاده از يك قطعه چوب خشك، پارچه خشك، پلاستيك، روزنامه چندبار تا شده، پوشيدن كفش لاستيكي بدون ميخ و يا ساير اشياء عايق در مقابل جريان برق در زير پا، مصدوم را از تماس با برق جدا نمود.
- ياري دهنده در هيچ شرايطي بدون عايق كردن خود نبايد بدن شخص برق گرفته را لمس نمايد، زيرا بي ترديد خود نيز دچار عارضه برق گرفتگي خواهد شد.
بعد از جدا نمودن شخص از جريان برق فورا به مركز اورژانس اطلاع دهيد. از افرادي كه در محل حادثه حضور دارند براي خبر كردن پزشك و آوردن آمبولانس كمك گرفته شود.
- در صورت قطع تنفس و يا ايست قلبي تا رسيدن مامورين امداد با استفاده از تنفس مصنوعي و ماساژ قلبي كمكهاي اوليه را به منظور شروع تنفس انجام دهيد.











1  در معابر عمومي به علايم هشدار دهنده كه روي تابلو هاي برق و تابلو هاي سيار كه كارگران نصب كرده اند توجه و مراقبت نماييد
2- از دستكاري به جعبه هاي انشعاب و باز كردن درب آنها و ساير تجهيزات برقي مثل تابلو هاي برق   پايه هاي فلزي روشنايي   دريچه ترمينال آنها و امثالهم خودداري نماييد
3- در صورتيكه حفاري جهت كابل برق احداث شده و يا كارگران مشغول به كار هستند مراقبت نماييد تا خطري متوجه شما نباشد  ضمنا مسير حفاري كه تا چند روز پر نمي شود به منطقه برق خود اطلاع دهيد
4- در صورت مشاهده هر گونه اتفاق غير منتظره در رابطه با تجهيزات برقي مثل تير شكستگي   آتش سوزي در تجهيزات برقي   سيم پارگي و  مراتب را فورا به اداره حوادث منطقه خود اطلاع دهيد
5- در هواي باراني و مرطوب   تنه درختان و تيرهاي برق بخصوص تيرهاي فلزي را لمس نكنيد
6- از بچه مراقبت نماييد كه به دريچه باز شده پايه هاي روشنايي فلزي نزديك و دستكاري نكنند
7- در جاهاييكه تيرهاي سيماني برق روي هم انباشته شده و خطر لغزش تيرها وجود دارد   بچه ها را محافظت نماييد
8- سيم هاي لخت كه از روي تيرهاي برق به سطح پايين يا زمين افتاده هرگز دست نزنيد
9- مراقبت نماييد   اشياء فلزي مثل آنتن تلويزيون به سيم هاي برق نزديك نشود
10- اشياء فلزي را در ساختمان يا معابر به سيم هاي برق نزديك نكنيد
11- ماشين خود را مقابل بست هاي زميني پارك نكنيد
12- در صورتيكه اختلالي در برق منزل داريد   هرگز تجهيزات برقي بيرون مثل جعبه انشعاب ها را باز و اقدام به تعميير نكنيد و هرگز از تعميرات الكتريكي نخواهيد اين كار را نكنيد
13- ماشين هاي مخصوص مثل جرثقيل و كاميون و كمپرسي در موقع عبور يا مانور به شبكه برق نزديك و ايجاد خطر شود بايستي اين مورد را توجه نماييد
14- در رانندگي دقت نماييد بخصوص در شبها كه وسيله خودرو به تجهيزات برقي اصابت نكند
15- لوله هاي فلزي محافظ كابل جعبه انشعاب و ساير متعلقات را هرگز دست نزنيد
16- چراغ هاي خاموش روشنايي را در اسرع وقت به نگهباني منطقه اطلاع دهيد
17- از شبكه هاي برق اقدام به گرفتن برق غير مجاز نكنيد و ساير تخلفات مشاهده شده را به نگهباني منطقه اطلاع دهيد
18- اگر افرادي در ارتباط با برق مراجعه نماييد كارت شناسايي در خواست و مراقبت نماييد كه افراد مشكوك نباشند
19- در موقع نصب يا جمع آوري تير برق و ترانس برق كه جرثقيل و كارگران مشغول به كار هستند، خطر باز شدن زنجير و ساير خطرات وجود دارد شديدا محوطه خطر را در نظر داشته باشيد
20- ممكن است بر اثر بي احتياطي كارگران برق در لحظاتي درب ورودي تجهيزات برقي باز باشد  مراقبت نماييدكه بچه ها و بزرگترها داخل پست نشوند و تجهيزات برقي را دست نزنند
21- در پشت بام ها مراقبت نماييد در هنگام برف روبي يا ساير موارد مواد به روي سيم هاي برق ريخته نشود ضمن اينكه در رطوبت، پارو و مواد عايق نيز هادي شده و خطر برق گرفتگي و حادثه وجود دارد
22- تير هاي چوبي كه آغشته به مواد سمي هستند  اگر تراشه آن در دست بچه ها بعلت مختلف فرو رود خطرات عفونت دارد  مراقبت نماييد
23- درختاني كه درگير با شبكه هستند بخصوص درختان ميوه مثل توت   براي بچه ها و جوانان كه بالاي درخت رفته اند در مواقعي امكان خطر دارد   مراقب باشيد
24- هرگز روي تير هاي برق و يا درب پست ها و ساير تابلو ها   اعلانات نصب نكنيد اين مسئله بسيار خطرناك است بخصوص نصب آگهي ها روي تير هاي برق كه خطر برق گرفتگي وجود دارد تا بحال چندين حادثه منجر به فوت در اين قبيل موارد مشاهده شده است
25-  كارگران در معابر براي اتصال كابل هاي زمين از قير مذاب استفاده مي نمايند  خطرات قير مذاب بسيار جدي است  به بچه ها و جوانان احتياط با برخورد به اين موارد را ياد آوري كنيد

دستورات ايمني و حفاظت برقكاران
1-  برقكاران موظفند هنگام كار تمام اشياء فلزي از قبيل ساعت  انگشتر  گردنبند و  را از خود دور نمايند
2- در گروههاي دو نفره  انجام كار همزمان در ارتفاع و يا روي تابلو براي بيش از يكنفرممنوع مي باشد و فرد دوم بايد مراقب بر چگونگي اجراي صحيح كار باشد
3-  قطع و وصل مدار بصورت غير استاندارد و به هرگونه روش شخصي ممنوع مي باشد
4-  در مدت زمان انجام كار گروه تعميرات روي تجهيزات الكتريكي  بايستي وسيله نقليه گروه در محل كار آماده باشد
5- در محيط كار بايد نوربه حد كافي موجود باشد
6- در شرايط جوي غير عادي رعد و برق انجام كار روي خطوط برقدار ممنوع است
7- هر گونه تغيير در لوازم ايمني استاندارد شده ممنوع مي باشد
8- در صورت نياز به كار نفر دوم روي يك پايه  صعود و فرود تا استقرار نفر اول ممنوع است
9- در صورتيكه شبكه به طريقي احداث شده باشد كه انجام كار بصورت برقدار ميسر نباشد لازم است قبل از هر گونه عمليات روي شبكه مورد نظر فرم قطع و وصل مدار دريافت گردد
10- افراد اجرايي بايستي از لوازم ايمني و ابزار كار سالم استفاده نمايند
11- هنگام كار حضور سرپرست گروه در محل كار الزامي است
12- افراد گروه اجرايي موظف مي باشند ضمن استفاده از لوازم ايمني و ابزار كار موارد زير را رعايت نمايند الف   تميز و سالم نگهداشتن لوازم ايمني و ابزار كار افراد مي بايستي لوازم ايمني و ابزار كار را سالم و تميز نگهداشته و از بكار بردن لوازم ايمني و ابزار كار معيوب خودداري نمايند 
ب   حمل و كاربرد صحيح لوازم افراد مي بايستي لوازم و ابزار كار را بطور صحيح بكار گرفته و در حمل آن رعايت احتياط را بعمل آورده و از انداختن آنها به اطراف خود داري نمايند
13- در صورت استفاده از خودرو   موتورسيكلت ماشين آلات و ماشين آلات سنگين   رعايت مقررات ايمني و خاص آن الزامي است
در صورت استفاده از موتور سيكلت بايستي از كلاه ايمني استفاده شود
خودرو اتفاقات بايد مجهز به بي سيم  آژير   چراغ گردان  پرژكتور  كپسول اطفاء حريق  فلاشر و كمربند ايمني باشد
در صورت استفاده از نردبان مقررات ايمني و خاص مربوطه الزامي است
در صورت نياز به نردبان با ارتفاع بيش از سه متر ضمن مهار نمودن نردبان به پايه و بصورت عمودي نفر دوم همكاريهاي لازم را به عمل آورد
مجريان موظف مي باشند قبل از اجراي كار و بعد از آن موضوع قطع و وصل نمودن برق مدار را به اطلاع مشتركين برسانند
چنانچه وضعيت شبكه به طريقي باشد كه براي افراد اجرايي اهالي و يا تاسيسات خطر آفرين باشد بايستي شبكه بلافاصله از نزديكترين محل قطع گردد
   برقكار گروه اتفاقات هنگام عزيمت به ماموريت حق رانندگي خودرو اتفاقات را ندارد
  در صورت كار با شبكه بي برق   پس از جدا نمودن شبكه از منبع تغذيه و قطع كليد راه انداز معابر و آزمايشات بي برقي مدار بايستي طرفين محل كار اتصال زمين گردد
   آزمايش الكتريكي بمنظور حصول اطمينان از بي برق بودن مدار با استفاده از ولت سنج ضمن رعايت فاصله مجاز
   بستن دستگاه اتصال زمين موقت در طرفين محل كار و در معرض ديد مجري بطريقي كه تا پايان كار نيازي به جابجايي آن نباشد
تخليه الكتريكي مدار
قبل از وصل نمودن برق مدار اطمينان حاصل شود كه مدار سالم و افراد مشغول كار نمي باشند
كارگران نبايد از سيم مهار  ميخ ها تسمه ها  سيم ها و امثال آن كه ممكن است استحكام كافي نداشته باشد آويزان شوند
دستكش عايق لاستيكي را بدون روكش چرمي نبايد بكار برد
قبل از نصب يا برچيدن هادي يا كابل نيرويي كه بعدا به تيرها و يا تاسيسات مشابه وارد خواهد شد بايد مورد نظر قرار گيرد و اقدام لازم جهت جلوگيري از انهدام اجزاء يا اشيا حامل نيرو به عمل آيد
طنابهايي كه در نزديكي خطوط برقدار مورد استفاده قرار مي گيرند بايد از جنس غير هادي باشند














چنانچه در زمينه برق تخصص نداريد با رعايت نكات ايمني فقط كارهاي ساده اي از قبيل تعويض لامپ هاي معمولي را انجام دهيد و به كارهاي مهمتر كه نياز به تخصص دارد اقدام نماييد
  در محيط مرطوب مانند حمام از وسايل برقي نظير بخاري برقي  سشوار  ريش تراش و ماشين لباسشويي استفاده نكنيد
  به فرزندانتان بياموزيد كه سيم هاي شبكه عمومي برق بدون روكش و فاقد حالت عايق بوده و لذا از نزديك شدن به آنها خودداري نمايند
  حريم برق را رعايت و از سقوط هر نوع ميله فلزي مانند آنتن تلويزيون بر روي شبكه هاي عمومي برق جلوگيري فرماييد
هنگام قطع برق از انجام هر اقدامي ابتدا چند لحظه صبر كنيد اگر در بررسي اوليه متوجه شديد كه قطع برق تنها مربوط به منزل و يا محل كار شما نبوده و بقيه همسايگان نيز دچار مشكل خاموشي شده اند   بنابراين در چنين حالتي با پرهيز از هرگونه دستكاري كنتور و يا تاسيسات برق رساني بلافاصله مراتب را از طريق تلفن هاي مندرج در روي قبوض برق  مصرفي به واحد حوادث برق منطقه مربوطه اطلاع دهيد  در صورتي كه قطع برق فقط مربوط به منزل و يا محل كار شما باشد در آن صورت با احتياط كامل نسبت به بررسي كليد و فيوز نصب شده در زير كنتور اقدام نماييد  اگر قطع برق به علت سوختگي فيوز و يا در اثر عملكرد كليد باشد توصيه مي شود قبل از وصل مجدد كليد و يا فيوز ارتباط كليه وسايل برقي متصل به سيستم داخلي را از طريق قطع كليد وسيله مربوطه و يا كشيدن دو شاخه آن از پريز از سيستم داخلي جدا نموده و سپس نسبت به وصل كليد و يا فيوز قبل از كنتور اقدام نماييد  فراموش نشود پس از برقراري مجدد جريان برق نسبت به وصل آن دسته از لوازم برقي كه كاركرد آنها مورد نياز مي باشد اقدام گردد در صورتي كه پس از بررسي كليد ويا فيوز نصب شده در جوار كنتور مشاهده گرديد كه كليد و يا فيوز سالم است و در حالت وصل مي باشد   اين نشانگر آن است كه قطع برق مربوط به انشعاب قبل از كنتور بوده و در اين مورد هم با پرهيز از هر گونه دستكاري كنتور و يا انشعابات قبل از كنتور مراتب را از طريق همان تلفن هاي مندرج بر روي قبض به واحد حوادث منطقه برق مربوطه اطلاع دهيد اين واحد به طور 24 ساعته و حتي در ايام تعطيل آماده رفع خاموشي از شبكه هاي برق رساني مي باشد  در صورتي كه از تماس با تلفن هاي فوق نتيجه اي حاصل نشد در آن صورت مي توانيد براي پي گيري   مراتب را با دفتر ارتباط مردمي  تلفن هاي 4 8066291  در ميان بگذاريد  اين تلفن ها در مورد پي گيري ساير مشكلات لاينحل مانده مشتركين با منطقه برق هم مي تواند مورد استفاده قرار بگيرد








خطرات برق در خانه
آيا مي توانيد يك روز بدون استفاده از برق زندگي كنيد؟
حتي تصور زندگي بدون برق مشكل است برق يكي از نعمات خداست كه با همت و زحمت كاركنان مجموعه صنعت برق توليد و توزيع مي شود و در اختيار مصرف كنندگان قرار ميگيريد.
استفاده از برق بايد با رعايت نكات ايمني همراه باشد و بايد افراد خانواده با خطرات برق و روش صحيح استفاده از برق آشنا باشند.
خطرات استفاده غيراصولي از برق عبارتنداز:
برق گرفتگي،سوختگي،آتش سوزي و صدمات ناشي از پرتاب شدن

برق گرفتگي چيست؟
قرار گرفتن دو نقطه از بدن در مسير جريان برق موجب عبور جريان از بدن مي شود و با توجه به شدت و مدت عبور جريان برق گرفتگي بوجود ميآيد و ممكن است عواقب مختلفي نظير مرگ ناشي از ايست قلبي- سوختگي داخلي- سوختگي خارجي بدنبال داشته باشد. بعد از برق گرفتگي ممكن است كليه ها از كار بيفتد يا دست ها بدليل سوختگي داخلي قطع شوند و يا بعلت پرتاب شدن(بعلت لرزش ناشي از برق گرفتگي)استخوانها دچار شكستگي گردند.

چگونه برق گرفتگي بوجود ميآيد
تمامي سطح زمين- ديوارها- كف اتاقها در تمامي طبقات بعنوان يك نقطه از سيستم برق محسوب مي شود و اگر نقطه اي از بدن موجود زنده از يك طرف به زمين يا ديوارها وصل باشد و از طرف ديگر به سيم برق (فاز يا نول)يا بدنه فلزي دستگاه برقي (يخچال - كولر- چرخ گوشت)تماس داشته باشد جريان برق از بدن عبور مي كند.بنابراين براي جلوگيري از برق گرفتگي بايستي اولاً از تماس مستقيم با سيمهاي برق (فازيا نول).با تماس غير مستقيم (بدنه فلزي دستگاههاي برقي كه ممكن است اتصال داخلي داشته باشند)جلوگيري كنيم و ثانياً اينكه هر وقت با وسايل برقي تماس داشته باشيم(درب يخچال- بدنه-كولر- چرخ گوشت و..) سعي كنيم از تماس دست يا پا به ديوار يا كف اتاق يا بدنه فلزي كابينت ها خودداري كنيم.
رعايت موارد ذيل از برق گرفتگي جلوگيري مي كند
1- سيستم وسايل برقي بايد كاملاً سالم باشنداگر طول سيم يا دو نقطه انتهايي كه به دو شاخه يا مادگي وصل شده دچار بريدگي شده باشد استفاده از آن سيم بسيار خطرناك مي باشد.
2- هنگام وصل كردن سيم دستگاه برقي اول انتهاي سيم(مادگي)كه به دستگاه وصل مي شود در محل خود نصب گردد و بعد از آن دو شاخه به پريز برق وصل شود.
3- هنگام وصل نمودن دو شاخه به پريز بدنه سخت دو شاخه را با دو انگشت بگيريد و از تماس كف دست با سيم خودداري كنيد.
4- هنگام بيرون كشيدن دو شاخه از پريز اول دستگاه را خاموش كنيد ثانياً دو انگشت دست چپ را در دو طرف پريز قرار دهيد و با دو انگشت دست ديگر قسمت سخت دو شاخه را بگيريد و از پريز برق جدا كنيد (از كشيدن سيم جداً خودداري كنيد)
5- هنگام باز كردن درب يخچال و يا استفاده از لوازم برقي در آشپزخانه حتماً دمپايي لاستيكي بپوشيد و از تماس همزمان هر دو دست بوسيله برقي و ديوارها خودداري كنيد.
6- هنگام شستشوي كف آشپزخانه كليه وسايل برقي را از برق جدا كنيد و سعي كنيد از پاشيده شدن آب به روي وسايل برقي خودداري شود و تازماني كه كاملاً كف آشپزخانه خشك نشده از وصل مجدد وسيله برقي به برق خودداري كنيد.
7- براي شستن ديوارهاي آشپزخانه از پاشيدن آب خودداري كنيد فقط با دستمال خيس روي ديوار بكشيد و در نزديكي پريزها و كليدها دستمال بايد مرطوب باشد.
8- براي تعويض لامپها ابتدا كليد را روي حالت خاموش قراردهيد و با استفاده از چهارپايه سالم و مناسب به نحوي كه با استقرار روي آن دستها كاملاً آزاد باشد با يك دست قسمت عايق سر پيچ (هلدر)را نگه داريد و با دست ديگر لامپ را باز كنيد و يا لامپ را نصب كنيد.
9- اگر سيم هاي شبكه برق كه در كوچه و خيابانها روي پايه ها نصب شده اند پاره شده و روي زمين افتاده از دست زدن به آنها خودداري كنيد و موضوع را به اتفاقات برق اطلاع دهيد.
10-اگر سيم هاي شبكه نزديك دريچه يا پشت بام باشد و امكان دسترسي به آنها وجود دارد از دست زدن به آنها خودداري كنيد و به اتفاقات برق اطلاع دهيد.
+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:40  توسط 66  | 

 
CT
چون جریان خطوط زیاد می باشد و نمی توان مستقیما آن را اندازه گرفت با استفاده ازاین دستگاه از جریان نمونه برداری میکنند.این دستگاه به صورت سری در مدار قرار می گیرد.همچنین برای ایزوله شدن شبکه های فشار قوی از سیتم های اندازه گیری و حفاظت از این وسیله استفاده می شود.
CVT
به موازات برقگير اين دستگاه نصب مي گردد و علت استفاده آن براي سد كننده فركانس 50 هرتز براي سيستم مخابراتي و اندازه گيري ولتاژ و محافظت براي رله ها مورد استفاده قرار مي گيرد و فرق آن باPT اين است كه پي تي فقط براي اندازه گيري و حفاظت مورد استفاده قرار مي گيرد.
PLC
روشی است که سیگنال های مخابراتی را از یک پست یا نیروگاه توسط خطوط فشار قوی ارسال کرده و در پست یا نیروگاه دیگر دریافت می کنند.


PT
چون ولتاژ خطوط زیاد می باشد و نمی توان مستقیما آن را اندازه گرفت با استفاده ازاین دستگاه از ولتاژ نمونه برداری میکنند.این دستگاه به صورت موازی در مدار قرار می گیرد.همچنین برای حفاظتی که نیاز به نمونه ولتاژ مانند رله های ولتاژی مانند رله های اندر ولتاژ یا آور ولتاژ و رله دیستانس دارد استفاده می شود.
REF رله
این رله مشابه رله دیفرانسیل می باشد و برای اتصالیهای فاز با زمین در داخل ترانس به کار می رود و به طور جداگانه در دو طرف ترانس نصب می شود.
SF6 كليد
كليدي كه در آن براي خاموش كردن جرقه ناشي از قطع و وصل از گاز خاموش كننده ای استفاده مي شود كه آن گاز SF6
ناميده مي شود.
V.A
برای نشان دادن قدرت ترانس از واحد ولت آمپر استفاده می شود.(توان ظاهري)
V.A.R
واحد اندازه گیری توان راکتیو می باشد.

استراکچر
استراکچر پایه های فلزی که نگهدارنده تجهیزات در پست می باشند.
آلارم
به محض عملکرد رله یا به وجود آمدن شرایط غیر عادی در مدار این دستگاه با به صدا در آوردن آژیر اپراتور را از وجود شرایط غیر عادی مطلع می کند.
آمپر
واحد اندازه گیری جریان آمپر می باشد.
آمپرمتر
برای اندازه گیری جریان از آمپرمتر استفاده می شود که این دستگاه به صورت سری در مدار قرار می گیرد.
اونت ركوردر
دستگاهي است كه وقايع وحادثه هارادر پستها ثبت مي كند.
اينكامينگ
ورودي ترانس مي باشد.(خروجي اصلي ترانس كه كليه فيدرهاي خروجي از آن تغذيه مي شوند).
اینتر لاک
برای جلوگیری ازمانور اشتباه معمولا بین سکسیونرها و بریکر چفت و بست مکانیکی یا الکتریکی قرار می گیرد.كه از آن به عنوان اينترلاك نام برده مي شود.
اینورتر
این دستگاه ولتاژ مستقیم را به متناوب تبدیل می کند. مورد استفاده آن برای مصارف اضطراری و پر اهمیت در پست می باشد.
باطری
به مجموعه ای از سلول ها که در آنها فعل و انفعالات الکترو شیمیایی قابل رفت و برگشت صورت می گیرد باطری می گویند که هر سلول متشکل از صفحات مثبت و منفی و ماده ای بنام الکترولیت که محلول از 8 قسمت آب و 3قسمت اسید سولفوریک غلیظ می باشد.
باطری خانه
محل قرار گرفتن باطري در پست را باطريخانه گويند.

برقگیر
به منظور حفاظت از شبكه در مقابل اضافه ولتاژها وتخليه آنها به زمين از برق گير استفاده مي شود .اضافه ولتاژهائي كه در شبكه ايجاد مي شوند يا ناشي از عوامل خارجي بوده نظير ساعقه ويا ناشي از اختلالات داخلي سيستم نظير– قطع ناگهان بار-. سوئيچينگ- اتصال كوتاه،عدم تنظيم ريگلاتوري ولتاژ وغيره
.برقگیر در ابتدای پست وطرفين ترانس و در شبکه توزیع در ابتدای خط و در مسیر خط نصب می شود.
بریکر
کلید قدرتی است که در موقع لزوم جريان عادي شبكه ودر موقع خطا جريان اتصال كوتاه وجريان زمين را سريع قطع نمايد این کلید قطع جریان را در یک فضای عایق انجام می دهد بنابراین این کلید میتواند در زیر بار قطع کند.
كپسول اطفاء حريق
كپسول هايي كه در پست نصب گرديده و در داخل آن مواد خاموش كننده آتش مانند پودر و گاز مي باشد و براي خاموش كردن انواع آتش از آن استفاده مي شود.
بی سیم

بی سیم دستگاهی که برای ارتباطات صوتی استفاده می شود.
پارالل کردن ترانس یا ژنراتور
یعنی موازی کردن دو ترانس فورماتور یا دو ژنراتور با هم که هدف از پارالل کردن بالا بردن ضریب اطمینان شبکه و تعدیل بار بین خطوط و ترانس ها وژنراتورها و استفاده مناسب از قدرت و ظرفیت تجهیزات می باشد.
پست
محلی که در آنجا تبدیل ولتاژ انجام گرفته یا کلید زنی صورت می پذیرد.
پلاک ترانس
پلاکی است که بر روی ترانس نصب می شود و اطلاعاتی را در مورد ترانس از قبیل ضریب قدرت سیم بندی ترانس سال ساخت کشور سازنده ولتاژ وجریان نامی و...را نشان می دهد.
تپ چنجر
وسیله ای است که با تغییر دادن سبب تغییر ولتاژ خروجی ترانس می گردد.این وسیله بیشتر در طرف فشار قوی ترانس نصب می شود.
ترانس مصرف داخلی
برای مصرف داخلی پست(،روشنایی،شارژر،تغذیه رله ها وتجهیزات ارتباطات راه دوراز اين ترانس) استفاده مي شود.
ترانس نولساز
به منظور ایجاد نقطه نول مصنوعی و در طرف مثلث ترانس ها و حفاظت ثانویه ترانس از ترانس نولساز استفاده می شود.
ترانسفورماتور
وسیله ای است که انرژی الکتریکی توسط القاء متقابل تبديل مي كنند و می تواند ولتاژ کم را به زیاد و بالعکس تبدیل نماید.
ترمومتر
برای اندازه گیری درجه حرارت از این دستگاه استفاده می شود
تست پلاك
ترمينال هايي است كه در مواقع تست و تنظيم رله ها مورد استفاده قرار مي گيرد تا نيازي به قطع بريكر نباشد.
استیک
وسیله عایقی است برای باز یا بستن فیوز کتد یا گراند سیار از آن استفاده می شود.
خازن
جهت بالا بردن ولتاژ،جهت جبران بار راکتیو كه در پستهاي فوق توضيع استفاده ميگردد.
خط انتقال
جهت انتقال جریان برق،جهت تبادل اطلاعات و جهت تبادل پیام با نصب سیستم PLC
ديسپاچينگ
مركز كنترل پستهاي انتقال و نيروگاهها ميباشد.(ثبت وقايع ايستگاهها،فرمان قطع و وصل ،روئيت مقادير (جريان و ولتاژو...)).از وظائف آنهاست
دیزلخانه
جهت تامين مصرف داخلي پست در زماني كه پست بي برق شده باشد
دیفکت
در صورت به وجود آمدن اشكالي در تجهيزات جهت رفع عيب آن اين برگ تكميل و به گروه تعميرات ارجاع داده مي شودتا رسيدگي گرددو رفع عيب شود.
رادیاتور ترانس
مخزنی است که در آن آب یا روغن در حال گردش وجود دارد که در اثر گردش دررادياتورآب يا روغن خنک شده و باعث خنك شدن ترانس مي شود.
راکتور
به منظور کاهش ولتاژ شبکه در مواقع افزایش ولتاژ شبکه(غیر عادی شدن ولتاژ) از راکتورها که جذب کننده بار راکتیو هستند استفاده می گردد.( جهت کاهش ولتاژ).
رله استند بای
وقتی که یک اتصال زمین بر روی فیدرهای خروجی باقیمانده و حفاظت فیدرهای مذکور عمل نکند این رله به عنوان پشتیبان حفاظت ها عمل کرده وفرمان قطع را به طرف اولیه و ثانویه ترانس داده و باعث خارج شدن ترانس
می شود.
رله بوخهلتس
این رله بین مخزن ترانس و کنسرواتور نصب می گردد.در اتصالی های شدید داخلي ترانس گازهای زیاد همراه با جهش روغن ایجاد شده که فشار حاصله در رله بوخهلتس باعث عملکرد رله و تریپ ترانس می شود.
رله تانک پروتکشن
برای حفاظت ترانس در مقابل اتصالی با بدنه از آن استفاده می شود.
رله جریان زمین
رله اي است که مانند رله جریان زیاد عمل می کند و اتصالیهای فاز به زمین را تشخیص داده و عمل می کند.
رله جریان زیاد
وقتی که جریان ورودی رله از ستینگ آن بالاتر رود این دستگاه بدون تاخیر فرمان لازم را صادر می کند.
رله جهتی
از جنس رله های توانی می باشند که بر اساس زاویه بین بردارهای ولتاژ وجریان عمل می کند.مانند رله جریان توان که برای جلوگیری کردن از موتوری شدن ژنراتور به کار می رود.
رله حفاظتی
دستگاهی که به طور خودکار جهت تشخیص خطا در شبکه، حس کردن خطا،نشان دادن خطا وفرمان جدا کردن بخش معیوب بکار می رود.
رله دیستانس
از لحاظ هر پست هر نقطه از شبکه دارای یک امپدلنس می باشد.که با به وجود آمدن خطا جای این نقاط در صفحه جابجا می شود باشناسایی جابجایی این نقاط می توان به خطا پی برد وآن را شناسایی کرد.این رله معمولا دارای سه ناحیه عملکرد می باشدو بر روي خطوط انتقال نصب ميگردد و نقطه اتصالي بوجود آمده بر روي خط را مشخص مي نمايد
رله دیفرانسیل
با نمونه برداری از جریانهای دو طرف ناحیه حفاظت شده و مقایسه آن با یک مقدار مشخص شده می تواند خطا را شناسایی و فرمان لازم را صادر کند.
رله ريكلوزر
اين رله بر روي خطوط نصب ميگردد تا درهنگام قطع در صورتي كه علت قطع گذرا و لحظه اي بوده بعد از مدت زمان تعريف شده روي آن فرمان وصل را به صورت اتوماتيك صادرنمايد.
رله فشار شكن
در صورتيكه فشارروغن يا گاز از حد تعريف شده بيشتر شود اين رله باعث تخليه اضافه فشار مي شود.
رله های توانی
این رله ها بر اساس توان عمل می کنند به عنوان مثال رله هایی که جهت توان را اندازه گیری می کنندیا رله هایی که توان اکتیو و راکتیو را اندازه گیری می کند.
رله کمبود ولتاژ
این رله هنگامی عمل می کند که ولتاژاز مقدار نامی پایین تر بیاید.معمولا آن را روی 80% مقدار نامی تنظیم می کنند.
سكسيونرسر خط
جهت باز كردن خط از پست در صورتي كه جريان از روي خط برداشته شده باشد و بريكر در ايستگاه مربوطه قطع باشد.
سکسیونر
کلید قدرتی است که برای قطع و وصل ولتاژبه کار می رود این کلید نمی تواند جریان برق را در زیر بار قطع کند.
سکسیونر ارت

به منظور ایمنی افرادی که روی خط انتقال و تجهیزات پست کار می کنند و همچنین تخلیه بارهای باقی مانده روی خطوط در ابتدای خطوط وپست های فشار قوی از سکسیونر ارت استفاده می شود.
سکسیونر بای پاس
سکسیونری است كه برای ارتباط بین دو باس بار از آن استفاده می کنند.
سیستم خنک کنندگی ترانس
جهت کاهش درجه حرارت ترانس ها و افزایش بازدهی و راندمان ترانسها از سیستم خنک کنندگی مختلفی بسته به قدرت و نوع ترانسها به کارگرفته می شود
سیلیکاژل
جهت جلو گيري از نفوظ رطوبت به ترانس ها از سنگ سیلیکاژل استفاده می شود در حالت عادی رنگ آن آبی می باشد و در صورت تغییر رنگ آن باید تعویض گردد.
شین یا باس بار
تمام سیم ها و کابل های یک نیروگاه یا ایستگاه که ولتاژ مساوی دارند با یک شمش یا باسبار در هر فاز به هم متصل می شوند و سپس با تبدیل ولتاژتوسط ترانسفورماتور به ولتاژدیگر تبدیل و به باسبارهای دیگر منتقل می شود.
صفحات هم پتانسيل
شبكه هاي آهني هستندكه زير پاي اپراتورها در بعضي نقاط مانند زير سكسيونرها و بريكرها براي از بين بردن ولتاژ تماس مورد استفاده قرار مي گيرد.
صفحه آلارم
صفحه ای است که دارای چراغهایی در هر خانه است که در آن عملکر رله ها و تجهیزات حفاظتی نشان داده می شود و به محض عمل کردن رله چراغ مربوط به آن رله در صفحه آلارم روشن می شود.
ضريب قدرت
ضريب قدرت يا كسينوس في ،كسينوس زاويه بين بردار توان اكتيو و توان ظاهري مي باشد.
فاز متر
وسیله است که دارای لامپ مخصوص می باشد و با تماس با خطوط انتقال با روشن یا خاموش شدن این لامپ می توان به برقدار یا بی برق بودن خط پی برد.
فالت رکوردر
دستگاهی است که برای ثپت کردن خطاهای به وجود آمده ازآن استفاده می شود.اين دستگاه خطا ها را به صورت نموداري ثبت مي كند.
فایر باکس
شامل یک جعبه می باشد جهت اتفا حريق که در داخل آن یک قرقره بزرگ و یک سر لوله با تعداد معینی لوله نواری در اندازه 20 متری وجود دارد این جعبه به صورت عمودی یا افقی نصب می شود.و بهترین فاصله برای نصب ان در داخل از کف تقریبا 70 سانتی متر است.
فرم اجازه کار
مسئول ايستگاه با روئيت فرم درخواست انجام كار كه به تاييد گروه تعميرات ،بهره برداري،ديسپاچينگ رسيده باشد فرم اجازه كار صادر مي نمايد و مشخص كننده محل هاي قطع تجهيزات همراه با حصار كشي و قفل تجهيزات خاموش شده تحويل گروه تعميرات مي نمايد.
فرم درخواست انجام کار
اين فرم داراي سه قسمت 1-درخواست گروه تعميرات 2-تاييد بهره برداري3-تاييد ديسپاچينگ مي باشد كه در تاريخ مشخص شده و مدت زمان انجام كار و مشخص شدن تجهيزاتي كه قطع شوند مي باشد و توسط گروه تعميرات به ايستگاه آورده مي شود.
فرکاس متر
برای اندازه گیری فرکانس شبکه از فرکانس متر استفاده می شود.این دستگاه به صورت موازی در مدار نصب می شود واحد فرکانس هرتز می باشد.
فرکانس
تعداد سیکل های صورت گرفته را در مدت زمان یک ثانیه فرکانس گویند. واحد فرکانس هرتز می باشد
فن
وسیله ای است که با انرژِی الکتریکی هوا را به سمت ترانس می دمد تا ترانس خنک شود.
فن ترانس

وسیله ای است که جهت خنک کردن سیم پیچ ترانس ازآن استفاده می شود و به دو صورت اتوماتیک و دستی در مدار قرار می گیرد.
قدرت نامی ترانس
قدرت اسمی ترانس مساوی حاصل ضرب جریان ثانویه اسمی و ولتاژ ثانویه اسمي می باشد. مقادیر استاندارد قدرت اسمي عبارتند از 2.5-5-10-15-30
كارت حفاظت دستگاه
كارتي كه براي حفظ دستگاه از آسيب بيشتر وپايداري شبكه برق و جلوگيري از صدمات جنبي مورد استفاده قرار مي گيرد.كاربرد آن در زماني است كه مسئول ايستگاه وضعيت نا مطلوبي را مشاهده كند،براي جلوگيري از صدمات بيشتر اين كارت صادر مي شود و بر روي كليد قطع و وصل تجهيز قرار مي گيرد.
كارت حفاظت شخصي
كارتي كه براي صدور آن عمليات بي برق شدن و جداسازي صورت مي گيرد،درنتيجه اين عمليات محيط كار ايمن مي شود.مورد كاربرد آن زماني است كه گروههاي تعميراتي تصميم به تعمير بخشي از سيستم را مي گيرندبا تكميل كارت با هماهنگي امورهاي ذيزبط بدون انرژي برق گرديده و با حصاركشي تحويل گروه متقاضي مي گردد.
گراند سیار
در مواقعی مانند کار گروه تعمیرات بر روی خطوط بعد از بی برق کردن خط ها
،جهت اطمینان از بی برق بودن خط و تخلیه بار های الکتریکی احتمالی به زمین از گراند سیار استفاده می کنند.
گروه برداری
اتصالات مختلف برای ترانس وجود دارد که به 4 گروه عمده تقسیم می شود ، که طرف فشار قوی ترانس با حرف بزرگ ،طرف فشار ضعيف با حرف كوچك و عدد نشان داده شده كه در عدد 30 ضرب مي شود و حاصل ضرب بدست آمده نشان دهنده زاويه اختلاف فاز بين ولتاژهاي طرف اوليه و ثانويه ترانس مي باشد.
گیج روغن
برای نشان دادن سطح روغن ترانس از این دستگاه که بر روی ترانس نصب است استفاده می شود.
لاین تراپ
این دستگاه سیم پیچ قطوری است که با یک خازن موازی شده است و در داخل سیم پیچ استوانه شکل قرار دارد و با آن موازی است و چون خازن با سیم پیچ موازی می باشد فقط در یک فرکانس خاص بنام فرکانس تشدید جریان مینیمم می شود.اگر مقدار سلف و خازن را طوری انتخاب کنیم که فرکانس تشدید روی فرکانس کاربر بیفتد، آنوقت سیگنال های مخابراتی چون جریان خیلی کم می شود نمی تواند وارد پست شودولی برق فشار قوی (50 هرتز) چون جریانش خیلی بالا است وارد پست می شود.
مقره
برای اتصال هادی های خطوط انتقال به دکل های که دارای ولتاژ زیادی نسبت به بدنه دکل و نسبت به یکدیگر می باشند از وسایل مجزا کننده استفاده می شود.که این وسایل عمدتا به صورت مقره استفاده می شود.
میتر
دستگاهی است که برای اندازه گیری ولتاژ،جریان،بار اکتیو،راکتیو ،فرکانس و....استفاده می شود.
نسبت تبديل
كميت الكتريكي كه براي تبديل ولتاژ يا جريان به مقادير كمتر يا بيشتر مورد نظر مورد استفاده قرار مي گيرد.
نمراتور برقگیر
سنجش تعداد عملکرد برق گیر را نشان می دهد که به منظور تخمین باقی مانده عمر برقگیر و تعیین محل عبور خط از نظر تعداد دفعات رعد و برق و اضافه ولتاژها از آن استفاده می شود.
هرتز
واحد اندازه گیری فرکانس هرتز می باشد
وات
واحد اندازه گیری توان اکتیو می باشد.
وات متر
برای اندازه گیری توان حقیقی یا اکتیو از وات متر استفاده می شود.وات متر یک سیم پیچ جریان که به طور سری در مدار قرار می گیرئ و در یک سیم پیچ ولتاژ که به صورت موازی در مدار قرار می گیرد، می باشد.
ولت
واحد اندازه گیری ولتاژ می باشد

ولت متر
برای اندازه گیری ولتاژ ، باید ولت متر را به صورت موازی با آن قرار داده، در صورتی که بخواهیم ولتاژ شبکه را در تابلو اندازه گیری کنیم بایستی دو سر ولت متر را در شبکه فشار ضعیف به شین های مورد نظر و در مورد شبکه های فشار قوی از طریق ثانویه ترانس ولتاژها به ولت متر اتصال دارد.
ولتاژ یا جریان نامی
حداكثر ولتاژ يا جرياني است كه در حالت كار نرمال سيستم به شبكه اعمال شده و تجهيزات مي توانند به طور دائم آن را تحمل نمايند.
کابل
هر نوع هادی که بتواند جریان برق را از داخل خود عبور داده و توسط مداری از محیط اطراف خود عایق شده باشد بطوریکه ولتاژ روی سطح عایق نسبت به زمین برابر صفرو سطح سیم یا هادی نسبت به زمین دارای ولتاژ فازی باشد کابل نامیده می شود.
کارت احتیاط
كارتي است كه براي صدور آن عمليات بي برق شدن وجداسازي صورت نمي گيرد،در نتيجه هيچ حفاظتي را تضمين نمي كند.كاربرد آن در شرايطي است كه گروههاي يي در كنار خطوط گرم مي خواهند مشغول به كار شوند اين كارت توسط متقاضي از ايستگاه درخواست مي شود و مفهوم آن اينست كه اگر حين كار گروه در طول خط،كليد خط در ايستگاه قطع شد كليد خط در ايستگاه بدون هماهنگي با متقاضي صدور كارت نبايد وصل گردد.
کارت فرم ضمانتنامه
كارتي كه براي صدور آن عمليات بي برق شدن و جداسازي صورت مي گيرد،درنتيجه اين عمليات محيط كار ايمن و تضمين مي شود.كاربرد اين كارت زماني است كه گروههاي تعميراتي تصميم به تعميربخشي از سيستم را مي گيرند. بعد از تكميل كارت اين بخش با هماهنگي امورهاي ذيربط و بدون انرژي نمودن قسمت هاي الكتريكي و غير فعال نمودن قسمت هاي مكانيكي و با حصار كشي و قفل به تجهيزات تحويل گروه متقاضي مي شود.
کسینوس فی متر
در نیروگاه ها و کارخانجات بزرگ باید ضریب قدرت مدار تحت کنترل باشد که برای اندازه گیری آن از کسینوس فی متر استفاده می شود.این دستگاه دارای دو سیم پیچ متحرک و یک سیم پیچ ثابت می باشد.سیم پیچ ثابت سر راه جریان و سیم پیچ های متحرک به صورت موازی در مدار قرار می گیرند.
کمپرسور
برای فشرده شدن هوا و ذخیره شدن در یک تانک مورد استفاده قرار میگیرد تا با صدور فرمان به میله متحرک کلید منتقل شود و باعث قطع و وصل کلید های نوع خلا شود.
کنتاکتور
کلید های الکترو مغناطیسی هستند که مهمترین جزء مدارهای فرمان می باشند که تشکیل شده از یک مغناطیس الکتریکی که یک قسمت از هسته آن متحرک بوده و توسط فنری از قسمت ثابت جدا نگه داشته می شود و یک سری کنتاکت عایق شده از یکدیگر به آن متصل می باشند و با آن حرکت می کنند.
کنتور
برای اندازه گیری انرژی اکتیو و راکتیو از کنتورها استفاده می شود.اتصال کنتورها در شبکه فشار ضعیف به صورت مستقیم و در شبکه های ولتاژ بالا از طریق ترانس های ولتاژ وجریان انجام می گیرد.
کنورتور
این دستگاه ولتاژمتناوب را به مستقیم تیدیل می کند.مورد استفاده آن برای یکسو سازها و شارژر می باشد.
کوپلینگ
کلید قدرتی است که برای ارتباط دو باس سکشن از آن استفاده می شود.
TCS رله
رله نظارت كننده برعملكرد قطع و وصل بوبين مي باشد.
نقشه تك خطي
نقشه تك خطي نقشه تك خطي تجهيزات كل ايستگاه مي باشد.كه شماره ديسپاچينگي آن با موقعيت نصب آن در نقشه مشخص شده است.
+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:39  توسط 66  | 

 
مقره هاي سيليكون رابر چيست و چه مزايايي دارد؟مقره‌هاي سيليكون رابر از جمله ابزارها و تجهيزاتي هستند كه كاربردهاي مناسبي را در شبكه توزيع كشور دارند.
در مقاله علمي زير كه به وسيله رضا امامي تهيه شده و ويژگيهاي مقره‌هاي سيليكون رابر و امتيازات آن مطرح شده است. تا چندي قبل مقره‌هاي كامپوزيت به خاطر نشكن‌بودن جايگزين مقره‌هاي نسل قبل از خود شد، اما رفته رفته در حين بهره‌برداري خواص مختلفي از خود نشان داد كه باعث شد بازار تقاضا مقره‌هاي سيليكون رابر افزايش چشمگيري پيدا كند. سيليكون به خاطر خاصيت منحصر به فرد Hydrophobic خود قابليتهاي بهتري را در شرايط مختلفي از خود نشان مي‌هد. پوشش سيليكون در مقايسه با انواع ديگر مقره‌هاي كامپوزيتي مورد استفاده بيشتري قرار گرفته است. خاصيت Hydrophobic از تشكيل يك نوار آب بر روي سطح سيليكون جلوگيري مي‌كند و آب بر روي آن به صورت قطره قطره باقي مي‌ماند. به همين دليل مقاومت سطحي آن كاهش پيدا نمي‌كند و احتمال ايجاد آرك در اين نوع مقره‌ها به حداقل مي‌رسد.
پيوند قوي مولكولي سيليكون باعث مي‌شود كه اگر لايه‌اي از آلودگي يا غبار بر روي سطح آن بنشيند مولكولهاي سيليكون به سمت بالا حركت كرده و لايه زايد را دربربگيرند به خاطر همين طرح خارجي پوشش همواره سيليكوني است به اين عمل خاصيت بازيافت (RECOVERY) مي‌گويند.


با توجه به نكات بالا بهترين انتخاب براي مناطق با آلودگيهاي مختلف و زياد و يا غبارآلود استفاده از پوششهاي سيليكوني است.
استفاده از مقره‌هاي سيليكوني باعث كم شدن هزينه شست‌وشو
و نگهداري مي‌شود.
برتري ديگر مقره‌هاي سيليكوني نسبت به ساير مقره‌هاي كامپوزيت مقاومت بسيار خوب در برابر اشعه ماوراء بنفش خورشيد است كه باعث شده عمر مفيد پوششهاي سيليكوني در مقايسه با ساير پوششها طولاني‌تر باشد.
قابل انعطاف‌بودن مقره‌هاي سيليكوني از شكستگي و پارگي آنها و آسيب‌پذير بودن در برابر ضربات مكانيكي جلوگيري مي‌كند.
يكي ديگر از ويژگيهاي اين نوع مقره‌ها وزن بسيار كم آنها در مقايسه با ساير مقره‌ها است كه اين مساله باعث مي‌شود كه مقدار و وزن دكلها به همين نسبت كم شود كه در كل باعث صرفه‌جويي در هزينه‌ها مي‌شود.
وزن كم مقره‌هاي سيليكوني باعث كم شدن هزينه حمل و نقل و آسان شدن آن مي‌شود. مقره‌هاي سيليكون رابر توليدي از نوع يكپارچه و بدون درز بوده كه اين تكنيك در حال حاضر پيشرفته‌ترين روشن ساخت مقره‌ها در دنيا است.
توليدكنندگان با بكارگيري متخصصان مختلف و استفاده از ابزارهاي مورد نياز و آزمايشهاي لازم طي چندين سال به دانش فني ساخت اين نوع مقره‌ها دست يافته‌اند.

اجزاي تشكيل دهنده مقره‌هاي سيليكون رابر
اجزاي تشكيل دهنده مقره‌هاي سيليكون رابر شامل موارد زير است:
1- مواد بكار رفته در اينگونه مقره‌ها از نوع كراسلينگ شده الكتريكي مطابق با استاندارد IEC1109-92 بدون هيچگونه فيلتر و افزودني اضافي است.
2- ميله‌هاي عايق از جنس فايبرگلاس (اپوكسي تقويت شده با الياف فيبر شيشه) و نوع ECR (مخصوص كاربرد الكتريكي و مقاوم در برابر اسيد) و از سازندگان معتبر و براساس استاندارد IEC1109 تهيه مي‌شود.
3- فيتينگهاي دو سر مقره براســاس استــانــدارد IEC 120 با بهترين كيفيت ساخته مي‌شود. فيتينگهاي مورد استفاده در مقره‌ها به صورت تانگ- اووال است كه اين نوع فيتينگها باعث كم شدن يراق‌آلات خط و در نتيجه باعث كاهش هزينه‌ها مي‌شود. اما برحسب درخواست مشتري ساير فيتينگها نيز مورد استفاده قرار خواهد گرفت. در ضمن تمامي مقره‌ها در مراحل ساخت مورد آزمايش روتين قرار مي‌گيرند. اين آزمايشها، شامل مواردي نظير آزمايشهاي مكانيكي و الكتريكي هستند.

توليد مقره‌هاي سيليكوني به روش قالب‌ريزي يكپارچه
براي توليد مقره‌هاي سيليكوني به روش قالب‌ريزي يكپارچه موارد زير را بايد مورد توجه قرار داد:
الف- استفاده از حلقه‌هاي پلاستيكي جهت قرار دادن ميله در مركز قالب ضروري است و اين ضرورت عوارض زير را دربر دارد:
1- به منظور حفاظت ميله مقره در مقابل ميدان الكتريكي كه باعث خوردگي و سوراخ شدن (puncher) ميله خواهد شد بايد ضخامت لايه سيليكوني بر روي ميله مقره حداقل
3 ميليمتر باشد. بديهي است در اطراف حلقه‌هاي لاستيكي مذكور ضخامت لايه سيليكوني كمتر از سه ميليمتر بوده و در نتيجه ميله در محل حلقه‌هاي اضافي داراي ضعف خواهد بود. بدين معني كه در اين نقطه خوردگي و سوراخ شدن (Puncher) خواهيم داشت.
2- جنس (مواد) حلقه‌هاي پلاستيكي در مقايسه با سيليكون رابر و اپوكسي رزين از طرح عايقي متفاوتي برخوردار است كه اين اختلاف
سطح باعث پلاريزاسيون بر روي
سطح مي‌شود كه اين خود باعث ايجاد گرماي الكتريكي موضعي شده
و در نتيجه تخليه ناقص
(Partial discharge) انجام‌مي‌گيرد و در نهايت باعث پوسيدگي در محل قرار گرفتن حلقه‌ها خواهد شد.
ب- وجود درزها و رگه‌هائي (Seams) در طول مقره كه با ميدان الكتريكي موازي است خط قالب و ريخته‌گري بر روي سطح مقره حاوي مواد اضافه‌اي است كه از محل بين دو قسمت قالب بيرون زده است. اين مواد اضافي بايد به دقت پاك شود تا از آسيب بدنه جلوگيري شد.
خط قالب به طور خفيف موج‌دار است كه سبب نامتجانسي و بدفرمي ميدان الكتريكي مي‌شود. اين امر موجب افزايش ميزان آلودگي و در نتيجه افزايش تخليه (discharge) در طول خط قالب خواهد شد كه در نهايت موجب فرسايش و زوال ماده و شكنندگي محيط اطراف خط قالب خواهد شد.
براي اينكه سيليكون رابر در شرايطي كه استفاده مي‌شود از عملكرد بهتري برخوردار باشد از بتونه (fillers) اضافي استفاده مي‌شود.
با افزودن آلومينيوم تري‌هيدرات (ATH)، ميزان مقاومت در برابر فرسايش افزوده خواهد شد. ميزان صحيح استفاده از بتونه (fillers) نقش بسيار مهمي در بالابردن عملكرد درست و صحيح مواد دارد. چنانچه ميزان ATH بيش از حد لازم باشد موجب شكنندگي سطح بشقاب (Shed) خواهد شد. (براي مثال زمانيكه بخواهد بيش از 90 درجه خم شود). يكي از نشانه‌ها و اثرات استفاده زياد ATH، سفيدشدن خط خميدگي درطول سطح بشقاب (shed) است.
ج- موضوع مهم بعدي درمورد مقره‌هاي كامپوزيت، طراحي اتصال بين مواد پلي مريك و فيتينگ‌هاي انتهائي است. بدنه (hausing) بايد دربرابرقوسهاي جزئي (partial arcs) كه بيشتر و ترجيحاً در محل اتصال بين بدنه (hausing) و فلز فيتينگ انتهائي صورت مي‌گيرد، محافظت شود.
طراحهاي فيتينگ انتهائي و تركيب آن با وضعيت اولين بشقاب (Shed) هم چنين پركردن حفره بين قسمتهاي فلزي و بدنه از عواملي هستند كه بر روي طول عمر مقره‌هاي كامپوزيت تاثير خواهند داشت.

پركردن حفره بين بدنه و فيتينگ
براي پركردن حفره بين بدنه (hausing) و فيتينگ ازمواد مختلفي استفاده مي‌شود. سه ماده متفاوت (فلز، سيليكون رابر، تركيب اپوكسي رزين و فايبر گلاس)
با سه ظرفيت گرمائي متفاوت با يكديگر در محلي كه پيوند سه گانه (triple junction) ناميده مي‌شود در تماس هستند. در زمان استفاده از مقره، با افزايش و كاهش دما اين مواد به ترتيب و با سرعتهاي متفاوت منقبض و يا منبسط خواهندشد.
نحوه Sealing بايد بگونه‌اي باشد كه خاصيت تطابق با اين حالتها را (انقباض- انبساط) داشته باشد بدون اينكه بر روي سطح فشار مكانيكي وارد آيد.
چنانچه بدنه در تماس مستقيم با قسمت فلزي باشد، وجود فشار مكانيكي بر روي سطح امري اجتناب‌ناپذير است. تحقيقات بر روي اين مقره‌ها نشان داده است كه پس از چند سال استفاده، سيليكون رابر از فيتينگ جدا شده و آب از طريق حفره‌ها به ميليه FRP نفوذ كرده و به ناحيه فشرده شده و متراكم آسيب رسانده است. در نتيجه ميله از فيتينگ جدا شده و موجب قطع خط مي‌شود.
به منظور جلوگيري از آنچه ذكر شد بايد از سيليكون رابر با خاصيت الاستيكي كه از خاصيت چسبندگي
(به فلز، سيليكون و ميله FRP) خوبي برخوردار باشد استفاده كرد و در برابر آب 100درصد چگال‌تر باشد.
خواص مكانيكي مواد بكاررفته در فيتينگ‌ها و نوع اتصال آن به ميله از اهميت بالائي برخوردار است.
يكي از مواردي كه بايد به آن
اشاره شود اين است كه استفاده از cast iron futtings در مقايسه با forged steel fittings يك عامل منفي و نامساعد محسوب شود. با استفاده از روشهاي تحليلي موجود وجود حفره هوائي در داخل مواد تقريباً امري غيرممكن است چون در شرايط عادي استفاده، وجود حفره‌هاي هوائي باعث ايجاد تركهاي فرسايشي مي‌شوند.
+ نوشته شده در  یکشنبه بیست و پنجم بهمن 1388ساعت 18:38  توسط 66  | 

الكتروموتورها از جمله‌ مهمترين‌ مصرف‌ كنندگان‌ انرژي‌ الكتريكي‌ در بخش‌هاي‌صنعتي‌، كشاورزي‌، خانگي‌، تجاري‌ و عمومي‌ بوده‌ و بطور متوسط در حدود 40 تا 50 درصد از برق‌ توليدي‌ كشور را مصرف‌ مي‌كنند. در ميان‌ اين‌ تجهيزات‌ موتورهاي‌ كوچك‌ ومتوسط (0/25 تا 150 اسب‌ بخار) عمدتاپ ازنوع‌ القايي‌ با روتور قفس‌ سنجبي‌ بوده‌ و اين‌بخش‌ از الكتروموتورها در حدود 60 تا 70 در صد از گل‌ مصرف‌ برق‌ الكتروموتورها را به‌خوداختصاص‌ مي‌دهند. باز دهي‌ عملي‌ اين‌ الكترو موتورهاي‌ كوچك‌ ومتوسط در شرايطبهره‌ برداري‌ سالانه‌ در حدود 50 تا 90 درصد است‌ و به‌ طور ميانگين‌ در حدود 25 تا 35در صد از انرژي‌ الكتريكي‌ مصرفي‌ در آنها تلف‌ مي‌شود كه‌ با توجه‌ به‌ اين‌ امر، پتانسيل‌فراواني‌ براي‌ كاهش‌ تلفات‌ اين‌ الكتروموتورها در كشور پيش‌ بيني‌ مي‌شود. در اين‌نوشتار يكي‌ از فن‌ آوريهاي‌ جديد و متناسب‌ با شرايط كشور براي‌ كاهش‌ تلفات‌ اين‌ دسته‌از تجهيزات‌ الكتريكي‌ بيان‌ شده‌ و مزاياي‌ آن‌ با توجه‌ به‌ امكانات‌ و پتانسيل‌هاي‌ بالقوه‌موجود، ارزيابي‌ مي‌شود .

الكترو موترها گروهي‌ از تجهيزات‌الكتريكي‌ هستند كه‌ بر اساس‌ روابط بين‌جريانهاي‌ الكتريكي‌ و ميدانهاي‌ مغناطيسي‌،باعث‌ تبديل‌انرژي‌ الكتريكي‌ به‌ انرژي‌مكانيكي‌ مي‌شوند. در حين‌ اين‌ عمل‌ (تبديل‌انرژي‌ الكتريكي‌ به‌ مكانيكي‌) مقداري‌ ازانرژي‌ تلف‌ مي‌شود. با توجه‌ به‌ اين‌ امر كيفيت‌ساخت‌ اين‌ تجهيزات‌ براي‌ دسترسي‌ به‌حداكثر بازدهي‌ اقتصادي‌ از اهميت‌ فراواني‌ برخوردار بوده‌ و در نتيجه‌ سازندگان‌ اين‌تجهيزات‌ مي‌توانند نقش‌ بسيار مهمي‌ دركاهش‌ مصرف‌ و تلفات‌ انرژي‌ الكتريكي‌داشته‌ باشند. مهمترين‌ عوامل‌ ايجاد تلفات‌ درموتورهاي‌ الكتريكي‌ عبارتند از :

ة عبور جريان‌ الكتريكي‌ در سيم‌ پيچ‌هاي‌استاتور و روتور و مقاومت‌ الكتريكي‌ اين‌هاديها
ة مغناطيس‌ شدن‌ متوالي‌ هسته‌ موتور ونيزجريانهاي‌ گردابي‌ ايجادي‌ درآن‌
ة تلفات‌ ناشي‌ از اصطكاك‌هاي‌ مكانيكي‌
ة اثرات‌ پارازيتي‌ (تلفات‌ اضافي‌ )
باتوجه‌ به‌ اين‌ كه‌ هرساله‌ مقادير فراواني‌از انرژي‌ الكتريكي‌ به‌ دليل‌ عدم‌ بازدهي‌مناسب‌ الكتروموتورها به‌ صورت‌ تلفات‌ به‌هدر مي‌رود بنابراين‌ در بسياري‌ از كشورهاكوشش‌هاي‌ فراواني‌ در جهت‌ بهبود بازدهي‌ وعملكرد اين‌ تجهيزات‌ بعمل‌ آمده‌ وسعي‌ شده‌است‌ تا در نظر گرفتن‌ امكانات‌ بالــــقوه‌ و
فن‌ آوريهاي‌ موجود ونيز قيمت‌ مواد اوليه‌ وهزينه‌هاي‌ تحميلي‌، مناسب‌ترين‌ گزينه‌هابراي‌ بهبود كارايي‌ موتورها بكار گرفته‌ شود.اين‌ روند بخصوص‌ هنگامي‌ مشخص‌ترمي‌شود كه‌ بدانيم‌ امروزه‌ در بسياري‌ ازكشورهاي‌ پيشرفته‌ يا درحال‌ توسعه‌، رعايت‌استانداردهاي‌ حداقل‌ مقادير مجاز بازدهي‌الكتروموتورها به‌ صورت‌ اجباري‌ در آمده‌ است‌و محدوده‌هايي‌ كه‌ اين‌ استانداردها پيشنهادكرده‌اند بگونه‌اي‌ است‌ كه‌ در بسياري‌ ازحالات‌ تنها با صرف‌ هزينه‌هاي‌ بالا و استفاده‌از فن‌ آوريهاي‌ جديد، دسترسي‌ به‌ آنها ميسراست‌ .
دركشور ما نيز با وجود اين‌ كه‌ بازدهي‌ اكثرالكتروموتورهاي‌ مورد استفاده‌ (ساخت‌ داخل‌يا وارداتي‌) حتي‌ از مقادير استاندارد ازايه‌ شده‌در دهه‌ 70 ميلادي‌ نيز پايين‌تر است‌، اما تاكنون‌ اقدامات‌ حدي‌ در زمينه‌ بهبود كارايي‌اين‌ تجهيزات‌ بعمل‌ نيامده‌ است‌. (شكل‌(2)روند افزايش‌ بازدهي‌ الكتروموتورهاي‌ باقدرت‌ 20 اسب‌ بخار (15 كيلووات‌) را از دهه‌70 ميلادي‌ تاكنون‌ نشان‌ مي‌دهد. همان‌ گونه‌كه‌ در اين‌ شكل‌ ديده‌ مي‌شود در اواسط دهه‌70 ميلادي‌، بازده‌ چنين‌ اكتروموتورهايي‌ درحدود 87تا 88 در صد بوده‌ است‌ كه‌ متاسفانه‌در حال‌ حاضر اين‌ مقدار براي‌ موتورهاي‌ مورداستفاده‌ در كشور به‌ حدود 85 تا86 در صدمحدود مي‌شود اين‌ در حالي‌ است‌ كه‌الكتروموتورهاي‌ هم‌ قدرت‌ استاندارد امروزي‌در دنيا باز در حدود 89 تا90 درصدبازدهي‌دارند سه‌ تاپنج‌ در صد بازدهي‌ بيشتر نسبت‌به‌ موتورهاي‌ مورداستفاده‌ در كشور)
در اينجا لازم‌ است‌ تا براي‌ پي‌ بردن‌ به‌اهميت‌ واقعي‌ بهبود بازدهي‌ الكتروموتورهاتوجه‌ بيشتري‌ به‌ اين‌ اطلاعات‌ معطوف‌ شودبه‌ عنوان‌ مثال‌ كافي‌ است‌ پتانسيل‌ كاهش‌اوج‌ بار شبكه‌ سراسري‌ را در نظر داشته‌ باشيم‌.همان‌ گونه‌ كه‌ بيان‌ شد بازدهي‌ متوسطالكتروموتورهاي‌ مورد استفاده‌ در كشور درحدود سه‌ تا پنج‌ در صد از الكتروموتورهاي‌استاندارد امروزي‌ در دنيا كمتر است‌. بادانستن‌ اوج‌ بار شبكه‌ سراسري‌ در سال‌ جاري‌يا سال‌ آينده‌ 27 هزارمگاوات‌ است‌ ودر حدود30 تا 35 درصد از اين‌ اوج‌ بار، براي‌ به‌ حركت‌در آوردن‌ الكتروموتورهاي‌ القايي‌ (و يادستگاههايي‌ كه‌ از اين‌ تجهيزات‌ استفاده‌مي‌كنند) استفاده‌ خواهد شد، افزايش‌ بازدهي‌الكتروموتورهاي‌ كشور تاحد استانداردمي‌تواند نياز اوج‌ بار شبكه‌ را در حدود 400 تا500 مگاوات‌ (معادل‌ با توان‌ توليدي‌ 20315عدد توربين‌ گازي‌ GE فريم‌ 5) كاهش‌ دهد.با توجه‌ به‌ اين‌ شرايط، امروزه‌ در كشورهاي‌پيشرفته‌، سعي‌ مي‌شود تا حدود مجاز بازدهي‌الكتروموتورها حتي‌ از مقادير استاندارد نيزفراتر رفته‌ و در برخي‌ كشورها نظير آمريكا،كانادا، استرالياو... رعايت‌ اين‌ حدود براي‌الكتروموتورهاي‌ مورد استفاده‌ در آن‌ كشورهااجباري‌ شده‌ است‌، اگر چه‌ سازندگان‌الكتروموتورهاي‌ موجود در آنجا مي‌توانندموتورهاي‌ با بازدهي‌ كمتر را صرفٹبراي‌صادرات‌ نيز توليد كنند. لازم‌ به‌ ذكر است‌ كه‌هرچند به‌ نظر مي‌رسد كه‌ بهبود بيشتر دربازدهي‌ الكتروموتورها با توجه‌ به‌ پيشرفتهاي‌روز افزون‌ در زمينه‌ مواد و طراحي‌ اين‌تجهيزات‌ مي‌تواند ادامه‌ يابد، اما اين‌ حالتهادر در اكثر موارد تنها از طريق‌ مواد وفن‌آوريهاي‌ بسيار گران‌ (نظير استفاده‌ ازورقهاي‌ الكتريكي‌ آمورف‌ يا ابر رساناها)ممكن‌ مي‌شود كه‌ بسيار هزينه‌ بر بوده‌ و درحال‌ حاضر چندان‌ استقبالي‌ از آنها بعمل‌نمي‌آيد .

روشهاي‌ بهبود بازدهي‌ الكتروموتورها
شكل‌ (3) نمايي‌ از اجزاي‌ مختلف‌ يك‌الكتروموتور القايي‌ را نشان‌ مي‌دهد. اين‌الكتروموتور از دو قسمت‌ اصلي‌ استاتور(قسمت‌ ساكن‌) و روتور (قسمت‌ متحرك‌)تشكيل‌ شده‌ است‌ كه‌ هر يك‌ از آنها شامل‌يك‌ جزء الكتريكي‌ (هاديها) و يك‌ جزءمغناطيسي‌ (هسته‌ها) است‌ با در نظر گرفتن‌اين‌ ساختار و دانستن‌ سهم‌ هريك‌ ازموءلفه‌هاي‌ تلفات‌ انرژي‌ در اين‌ تجهيزات‌بهبود بازدهي‌ الكتروموتورها از چند طريق‌امكان‌پذير خواهد بود ولي‌ در هر حال‌مهمترين‌ اقدامات‌ براي‌ بهبود باز دهي‌الكتروموتورها را مي‌توان‌ در كاهش‌ تلفات‌هسته‌ يا تلفات‌ هاديهايانها خلاصه‌ كرد.
متاسفانه‌ بسياري‌ از فن‌ آوريهاي‌ شناخته‌شده‌ براي‌ بهبود بازدهي‌ انرژي‌ درالكتروموتورها باعث‌ افزايش‌ ابعاد آنها خواهدشد و اين‌ افزايش‌ ابعادي‌ بيشتر شامل‌ ازديادطول‌ آنهاست‌ به‌ عنوان‌ مثال‌ يكي‌ ازروشهاي‌شناخته‌ شده‌ براي‌ كاهش‌ تلفات‌ هسته‌ درموتورهاي‌ الكتريكي‌، افزايش‌ طول‌ هسته‌آنهاست‌ كه‌ اين‌ حالت‌ ار يك‌ طرف‌ مستلزم‌تغييرات‌ فراوان‌ در خط توليد اين‌ نوع‌ موتورهابوده‌ و باعث‌ ناهمخواني‌ وعدم‌ انصباق‌ موتورساخته‌ شده‌ با ساير تجهيزات‌ متصل‌ به‌ آن‌مي‌شود و از طرف‌ ديگر با توجه‌ به‌ مصرف‌بيشتر مواد اوليه‌ (هسته‌ و هادي‌)، قيمت‌موتورها افزايش‌ زيادي‌ خواهد يافت‌. افزايش‌سطح‌ مقطع‌ هسته‌ موتورها نيز كم‌ و بيش‌مشكلاتي‌ مشابه‌ با موارد فوق‌ داشته‌ و براي‌بسياري‌ از توليد كنندگان‌ داخلي‌، چندان‌جاذبه‌اي‌ ندارد. در مورد افزايش‌ سطح‌ مقطع‌هاديهاي‌ الكتروموتورها نيز اين‌ حالت‌مستلزم‌ تغييرات‌ وسيع‌ در قالبهاي‌ ساخت‌هسته‌ و در نتيجه‌ تغيير طراحي‌الكتوموتورست‌ كه‌ به‌ نوبه‌ خود هزينه‌هاي‌توليد را به‌ طور چشمگيري‌ افزايش‌ با توجه‌ به‌اين‌ موارد و در نظر داشتن‌ مشكلات‌ ناشي‌ ازتغيير طراحي‌ و يا تغيير ابعاد الكتروموتورها،مناسب‌ترين‌، گزينه‌ها براي‌ بهبود بازدهي‌الكتروموتورهاي‌ داخلي‌، تغيير مواد مورداستفاده‌ در ساخت‌ آنهاست‌ .
مهم‌ترين‌ مواد مورد استفاده‌ در ساخت‌هسته‌ الكتروموتورها را ورقهاي‌ فولادالكتريكي‌ كم‌ كربن‌ (Motor Lamination)ويا فولادهاي‌ سيليكوني‌ با دانه‌هاي‌ غير جهت‌دار(Non- Oriented Silicon)تشكيل‌مي‌دهند. اينگونه‌ ورقها كه‌ با ضخامت‌هاي‌متفاوت‌/8./3-.ميلي‌ متر) وبا مقادير مختلف‌عناصر آلياژي‌ (منگنز،آلومينيوم‌ و سيليسيم‌)توليد مي‌شوند داراي‌ خواص‌ مغناطيسي‌متفاوت‌ و نيز قيمت‌هاي‌ بسيار گسترده‌هستند. مهمترين‌ خواص‌ مغناطيسي‌ موردنظر در حين‌ انتخاب‌ اين‌گونه‌ ورقهابراي‌ساخت‌ هسته‌ الكتروموتورها شامل‌ نفوذپذيري‌ مغناطيسي‌، تلفات‌ توان‌ و القاي‌ اشباع‌در آنهاست‌ كه‌ با تغيير ميزان‌ عناصر الياژي‌ ويا ضخامت‌ ورقها، اين‌ خواص‌ را ميتوان‌بدست‌ آورد. براي‌ كاهش‌ تلفات‌ توان‌ و انرژي‌درهسته‌ استاتور الكتروموتورهاي‌ القايي‌،مي‌توان‌ با استفاده‌ از ورقهاي‌ فولاد الكتريكي‌با مقادير بالاتر سيليسيم‌ و يا انتخاب‌ ورقهاي‌با ضخامت‌ كمتر، بازدهي‌ آنهارا تا مناسبي‌افزايش‌ داد اما اين‌ حالت‌ مي‌تواند از يك‌طرف‌ ساير خواص‌ هسته‌ را تحت‌ تاثير قراردهد و از طرف‌ ديگر افزايش‌ قيمت‌ وهزينه‌هاي‌ توليد را در پي‌ خواهد داشت‌ چراكه‌ با انتخاب‌ ورقهاي‌ نازكتر و با مقادير بيشترعناصر آلياژي‌، اولاپ هزينه‌ خريد اين‌ ورقهابيشتر شده‌ و در ثاني‌ عوامل‌ مربوط به‌ برش‌ وپانچ‌ و هسته‌ چيني‌ نيز هزينه‌هاي‌ توليد را به‌مراتب‌ بالاتر خواهد برد. در هر حال‌ اين‌ تغييرمواد هسته‌ براي‌ كاهش‌ تلفات‌ الكتروموتورهامي‌تواند بدون‌ تغيير فروان‌ در طراحي‌ اين‌تجهيزات‌ به‌ عنوان‌ يك‌ روش‌ مناسب‌، مطرح‌باشد هرچند كه‌ درحال‌ حاضر با توجه‌ به‌ عدم‌توانايي‌ ساخت‌ داخل‌ ورقهاي‌ فولاد سيليسيم‌دار در كشور ،هزينه‌هاي‌ ارزي‌ تهيه‌ مواد اوليه‌و ساخت‌ چنين‌ الكتروموتورهايي‌ تا حدي‌ بالاخواهد بود.
روش‌ مناسب‌ ديگر براي‌ كاهش‌ تلفات‌الكتروموتورها بدون‌ نياز به‌ تغيير طراحي‌ وياابعاد آنها، استفاده‌ از هادي‌هاي‌ مسي‌ به‌ جاي‌آلومينيوم‌ در آنها ست‌.باتوجه‌ به‌ آنكه‌ هدايت‌الكتريكي‌ مس‌ تقربياپ 60 درصد بيشتر ازهدايت‌ الكتريكي‌ آلومينيوم‌ است‌، در بيشترحالتها براي‌ ساخت‌ هاديهاي‌ استاتورالكتروموتورها از مسن‌ استفاده‌ مي‌شود. درساخت‌ هاديهاي‌ روتورالكتروموتورها نيز اگرچه‌ براي‌ الكتروموتورهاي‌ بزرگ‌ (باتوان‌بيشتر از 250 كيلو وات‌) معمولاپاز مسن‌الكتريكي‌ كار شده‌ و شكل‌ داده‌ شده‌ استفاده‌مي‌شود، اما روش‌ ساخت‌ روتور چنين‌الكتروموتورهايي‌ ريخته‌ گري‌ نبوده‌ و بنابراين‌بسيار زمان‌ گران‌ و هزينه‌بر هستند هرچند كه‌با توجه‌ به‌ تعداد نسبتاپ كم‌ ساخت‌ چنين‌الكتروموتورهايي‌، استفاده‌ از چينن‌ روشي‌چندان‌ نامطلوب‌ در نظر گرفته‌ نمي‌ شود.درمورد الكتروموتورهاي‌ القايي‌ كوچك‌ و متوسطكه‌ سالانه‌ تعداد بسيار زيادي‌ از آنها توليدمي‌شود، تنها روش‌ اقتصادي‌ براي‌ ساخت‌روتور آنها، ريخته‌ گري‌ دايكاست‌ (تحت‌فشار) فلز هادي‌ اطراف‌ هسته‌ و ايجاد يك‌ساختار يكپارچه‌ از روتور است‌. شكل‌ (4)نمونه‌اي‌ از روتورهاي‌ توليدي‌ به‌ اين‌ روش‌ رانشان‌ مي‌دهد كه‌ هاديهاي‌ قفس‌ سنجابي‌اين‌ روتور نيز پس‌ از جداسازي‌ قسمت‌هاي‌آهني‌ (از طريق‌ حل‌ سازي‌ در اسيد) بخوبي‌نمايان‌ است‌ .
اگر چه‌ از زمانهاي‌ گذشته‌ نيز مشخص‌بوده‌ است‌ كه‌ بكار بردن‌ هاديهاي‌ مسي‌ درساخت‌ روتور الكتروموتورهاي‌ القايي‌ قف‌س‌سنجابي‌ مي‌تواند باعث‌ بهبود بازدهي‌ آنهاشود اما به‌ دليل‌ مشكلات‌ موجود بر سر راه‌ريخته‌ گري‌ دايكاست‌ مس‌ و سهولت‌ بيشتراين‌ فرايند براي‌ هاديهاي‌ آلومينومي‌، با درنظر گرفتن‌ مسائل‌ اقتصادي‌، ريخته‌ گري‌دايكاست‌ آلومينيوم‌ به‌ عنوان‌ روش‌ مناسب‌تربراي‌ ساخت‌ اين‌ روتورها مورد استفاده‌قرارمي‌ گيرد. اين‌ حالت‌ باعث‌ شد كه‌ تاچندين‌ سال‌ گذشته‌ تقريباپ روتور تمامي‌الكتروموتورهاي‌ القايي‌ قفس‌ سنجابي‌كوچك‌ و متوسط از طريق‌ ريخته‌ گري‌دايكاست‌ آلومينيوم‌ توليد شود و متاسفانه‌استفاده‌ از هاديهاي‌ مسي‌ تنها در اجزامي‌استاتور چنين‌ الكتروموتورهايي‌ خلاصه‌ شودو با اين‌ حال‌ از حدود دهه‌ 70 ميلادي‌ باافزايش‌ قسمت‌ انرژي‌ الكتريكي‌ تلاشهايي‌شد تا ساخت‌ روتورهاي‌ مسي‌ دايكاست‌ شده‌به‌ صورت‌ اقتصادي‌تر صورت‌ گرفته‌ و عوامل‌كنترل‌ كننده‌ اين‌ فرايند، بيشتر شناسايي‌ شود.اين‌ روند به‌ خصوص‌ از اواخر دهه‌ 90ميلادي‌،گسترش‌ فراواني‌ يافت‌ و با انجام‌ مطالعات‌ وتحقيقات‌ كاربردي‌، مهمترين‌ روشهاوفن‌آوريهاي‌ مناسب‌ واقتصادي‌ براي‌ ساخت‌چنين‌ روتورهايي‌، شناسايي‌ شد به‌ گونه‌اي‌ كه‌امروزه‌ توليد انبوه‌ چنين‌ الكتروموتورهايي‌ درتعدادي‌ از كارخانه‌هاي‌ بزرگ‌ سازنده‌الكتروموتورها آغاز شده‌ واستقبال‌ بسيارزيادي‌ از اين‌ محصولات‌ بعمل‌ آمده‌ است‌ .
نكته‌ بسيار مهم‌ در مورد چنين‌الكتروموتورهايي‌ آن‌ است‌ كه‌ بدون‌ هيچ‌ گونه‌تغيير طراحي‌ و يا تغيير ابعادي‌ الكتروموتور،تلفات‌ آنها تا حدود زيادي‌ كاهش‌ مي‌يابد واين‌ حالت‌ مخصوصاپ براي‌ سازندگاني‌ نظيرتوليد كنندگان‌ ايراني‌، بسيار مناسب‌ خواهدبود، بخصوص‌ آن‌ كه‌ توجه‌ داشته‌ باشيم‌ كه‌ درزمينه‌ مواد اوليه‌ مورد نياز، ايران‌ در حال‌ حاضرپنجمين‌ كشور توليد كننده‌ مسن‌ محسوب‌مي‌شود (رتبه‌ دوم‌ به‌ لحاظ دارا بودن‌ معادن‌مسن‌ دنيا) در حالي‌ كه‌ جايگاه‌ مناسبي‌ درزمينه‌ توليد آلومينيوم‌ نداشته‌ و لذا اين‌جايگزيني‌، هزينه‌ ارزي‌ اضافي‌ را تحميل‌نخواهد كرد، ضمن‌ آنكه‌ مي‌تواند نياز به‌واردات‌ آلومينيوم‌ را نيز كاهش‌ دهد. بنابراين‌به‌ نظر مي‌رسد كه‌ با توجهبه‌ شرايط كنوني‌كشور، فن‌آوري‌ مناسب‌ترين‌ گزينه‌اي‌ است‌كه‌ بدون‌ افزايش‌ هزينه‌هاي‌ ارزي‌ و يا بدون‌نياز به‌ ن‌ آوريهاي‌ گران‌ قيمت‌ (نظير استفاده‌از ابر رساناها و يا ورق‌هاي‌ الكتريكي‌ آمورف‌يا پرسيليسم‌) مي‌تواند باعث‌ كاهش‌ قابل‌ملاحظه‌ در تلفات‌ برق‌ و انرژي‌الكتروموتورهاي‌ داخلي‌ شود .

مزاياي‌ روتورهاي‌ مسي‌ دايكاست‌ شده‌
مهم‌ترين‌ مزيت‌ استفاداه‌ از روتورهاي‌ مسي‌دايكاست‌ شده‌ در الكتروموتورهاي‌ القايي‌،كاهش‌ فراواني‌ در تلفات‌ توان‌ (انرژي‌) و بهبودبازدهي‌ اين‌ نوع‌ الكتروموتورهاست‌.جدول‌ (1)
خلاصه‌اي‌ از نتايج‌ حاصل‌ شده‌ از مقايسه‌بازدهي‌ و تلفات‌ الكتروموتورهاي‌ القايي‌قفس‌ سنجابي‌ با روتورهاي‌ مسي‌ و ياآلومينيومي‌ دايكاست‌ شده‌ را نشاه‌ مي‌دهد .


جدول‌

همانگونه‌ كه‌ از جدول‌ (1) مشاهده‌مي‌شود استفاده‌ از روتوراي‌ مسي‌ دايكاست‌شده‌ به‌ جاي‌ آلومينيوم‌ در الكتروموتورهاي‌استاندارد (ستونهاي‌ 3و4)، باعث‌ افزايش‌بازدهي‌ آنها در حدود چهارتاهفت‌ در صد و نيزكاهش‌ تلفات‌ اين‌ نوع‌ الكتروموتورها در حدود30 تا 35 در صد، مي‌شود. در صورتي‌ كه‌ اين‌حالت‌ در كشور محقق‌ شود، با در نظر داشتن‌مصرف‌ برق‌ كشور در سال‌ آينده‌ در حدود120ميليارد كيلو وات‌ ساعت‌ و لحاظ كردن‌ 30تا 35 در صد از اين‌ مصرف‌ برق‌ درالكتروموتورهاي‌ القايي‌ كوچك‌ و متوسط، درصورتي‌ كه‌ بازدهي‌ آنها در حدود 5 تا 6 در صدافزايش‌ يابد، پتانسيل‌ موجود براي‌ صرفه‌جويي‌ سالانه‌ انرژي‌ الكتريكي‌ مصرفي‌ درحدود 2/5تا سه‌ ميليارد كيلووات‌ ساعت‌ (به‌ارزش‌ تقريبي‌ 60 تا 70 ميليارد تومان‌) خواهدبود. همچنين‌ با توجه‌ به‌ اوج‌ بار شبكه‌سراسري‌ (در حدود 27000 مگاوات‌) و مصرف‌برق‌ اين‌ الكتروموتورها (در حدود 30تا 35درصد) از اين‌ اوج‌ بار، پتانسيل‌ پيك‌ سايي‌شبكه‌ با استفاده‌ از اين‌ فن‌ آوري‌ در حدود500خواهد بود. علاوه‌ بر اين‌، بررسيهاي‌مختلف‌ نشان‌ داده‌ است‌ كه‌ به‌ دليل‌ كاهش‌تلفات‌ و گرماي‌ ايجاد شده‌ درالكتروموتورهاي‌ القايي‌ با روتورهاي‌ مسي‌دايكاست‌ شده‌، عمر آنها حداقل‌ 50 در صدبيشتر از موتورهاي‌ با روتورهاي‌ آلومينيومي‌است‌ ضمن‌ آنكه‌ به‌ دليل‌ خواص‌ استحكامي‌بيشتر مس‌ نسبت‌ به‌ آلومينيوم‌، توانايي‌تحمل‌ نيروهاي‌ مكانيكي‌ (بخصوص‌خستگي‌) در اينگونه‌ روتورها بيشتر ازروتورهاي‌ آلومينيومي‌ بوده‌ و به‌ اين‌ دليل‌ نيز،عمور الكتروموترهاي‌ القايي‌ با روتورهاي‌مسي‌ دايكاست‌ شده‌ بيشتر خواهد بود .

نتيجه‌گيري‌
بهبود بازدهي‌ موتورهاي‌ الكتريكي‌القايي‌، از جمله‌ مهم‌ترين‌ روش‌هابراي‌ كم‌كردن‌ تلفات‌ انرژي‌ الكتريكي‌ و نيز كاهش‌اوج‌ بار شبكه‌ سراسري‌ محسوب‌ مي‌شود. اين‌نوع‌ الكتروموتورها در محدوده‌ قدرت‌ كوچك‌ ومتوسط (0/25-150اسب‌ بخار) هر سال‌ بيش‌از 30 در صد مصرف‌ برق‌ كشور رابه‌خوداختصاص‌ مي‌دهند و با توجه‌ به‌ بازدهي‌پايين‌ آنها، استفاده‌ از روشهاي‌ مناسب‌واقتصادي‌ براي‌ بهبود بازدهي‌ آنها، ارزش‌فراواني‌ خواهد داشت‌. با توجه‌ به‌ شرايطكنوني‌ توليد كنندگان‌ اين‌ تجهيزات‌ در داخل‌كشور ومحدوديت‌هاي‌ موجود در رابطه‌ باتغيير طراحي‌ وابعاد اين‌ الكتروموتورها در كنارساير مسائل‌ مربوط به‌ هزينه‌هاي‌ ارزي‌، يكي‌از مناسب‌ترين‌ روشها براي‌ افزايش‌ كارايي‌اين‌ الكتروموتورها، استفاده‌ از روتورهاي‌مسي‌ دايكاست‌ شده‌ به‌ جاي‌ روتورهاي‌آلومينيومي‌ است‌ كه‌ اين‌ فن‌ آوري‌ قادرمي‌شوند تلفات‌ برق‌ را در اين‌ تجهيزات‌ درحدود 30 در صد كاهش‌ دهد. پتانسيل‌ پيك‌سايي‌ شبكه‌ سراسري‌ از طريق‌ اين‌ فن‌ آوري‌بيش‌ از 500 مگاوات‌ و مقدار صرفه‌ جويي‌انرژي‌ الكتريكي‌ در كشور از اين‌ طريق‌سالانه‌ 2/5 تا سه‌ ميليارد كيلووات‌ ساعت‌( باارزش‌ تقريبي‌ 60-70ميليارد تومان‌) تخمين‌زده‌ مي‌شود به‌ علاوه‌ اين‌ حالت‌ منجر به‌افزايش‌ عمر، كاهش‌ نياز به‌ خنك‌ كنندگي‌،نگهداري‌ و تعمير آسانتر و نيز عملكردمكانيكي‌ بهتر اين‌ تجهيزات‌ خواهد شد اين‌امر با نظر داشتن‌ اينكه‌ ايران‌ يكي‌ ازبزرگترين‌ دارندگان‌ و توليد كنندگان‌ مس‌ دردنيا ست‌ لزوم‌ توجه‌ بيشتر به‌ اين‌ فن‌ آوري‌ رابيش‌ از پيش‌ نمايان‌ مي‌كند و چه‌ بسا ممكن‌است‌ از اين‌ طريق‌ امكان‌ صادرات‌ اين‌الكتروموتورهاي‌ پربازده‌ با قيمت‌هاي‌ قابل‌به‌ بازارهاي‌ جهاني‌ نيز فراهم‌ شود./م‌

محمدرضا جهانگيري‌ پژوهشگاه‌ نيرو

منابع‌ :
-1اطلاعات‌ در دسترس‌ وخصوصي‌تعدادي‌ از توليد كنندگان‌ داخلي‌موتورهاي‌ الكتريكي‌
-2 كاتالوگ‌ محصولات‌ شركتهاي‌ الكتروموتورسازي‌
Baldor , Brook Crompton ,EmersonMotors , Leroy Somer,A.O. Smith
H. Stadler , Energy Savings byMeans of Electrical Drives ,3th.Energy Efficieney in MotorDriven Systems , Italy 2002
D . Vanson ,"Cast Copper RotorsRotors - Efficency Test Reslts" CDASpring- Meeting , June 2000
J.G. Cowie et al, "Materials to Die-Cast the Copper Conductors of theInduction Motor", Die CastingEndgineet , 2001
6) S. Lie et al , "Copper Die- CasRotor Efficiency Imprvement andEconomic Consideration" IEEETrans. Energy Convers., VOL .10,NO, 3, 1995
7) M . Poloujadoff et at , " SomeEconmical Comparisons BetweenAluminum and Copper SquirrelCages " , IEEE Trans. Ebergy.,Convers vol . 10 , No . 3-1995
8) D.T peters et al , "Use of Hig
h Temperature Die Material andHot Dies for High pressure DieCasting pure Copper and copperAlloys" , Die casting, NADCA
, 2002 Hot Dies for
9) EURODRIVE CompanyCatalouy Catalouge , " EnergySaving Motors by sew-Euodrive :Effl, Eff2, among otgers", 2002
10) D.T Peters et al , " ImprovedMotor Efficiency and performanceThrough the Die- Cast CopperRotors" , Int. Conf
. Electrical Machines
, Belgium , 2002
11) " Energy Efficent Motors -DTE/DVE " , Sew EurodriveCatalog 11226226 ,2003

+ نوشته شده در  شنبه بیست و چهارم بهمن 1388ساعت 21:18  توسط 66  | 

ژنراتورهاي‌ توربيني‌ در بيش‌ از 100 سال‌ پيش‌ كه‌ براي‌ اولين‌ بار وارد عرصه‌ كاري‌شدند با هوا خنك‌ مي‌شدند. با اين‌ حال‌ همچنان‌ كه‌ خروجي‌ واحد ژنراتور افزايش‌ پيدا كردنياز به‌ خنك‌كنندگي‌ موثر افزايش‌ يافت‌. اين‌ نياز منجر به‌ تكميل‌ ژنراتورهايي‌ شد كه‌ باهيدروژن‌ و آب‌، خنك‌ مي‌شدند. هدايت‌ حرارتي‌ هيدروژن‌، هفت‌ برابر هوا بوده‌ و با همان‌فشار مطلق‌، چگالي‌ آن‌ يك‌ دهم‌ هواست‌.
پيش‌ از انتخاب‌ نوع‌ سيستم‌خنك‌كنندگي‌ مورد استفاده‌ براي‌ ژنراتور، دوموضوع‌ عمده‌ وجود دارد كه‌ عبارتند از:اندازه‌ مگاولت‌ آمپر ژنراتور و يك‌ سايت‌ هوابا كيفيت‌ خوب‌. با وجود اين‌ كه‌خنك‌كنندگي‌ با هوا نوعا براي‌ واحدهاي‌كوچكتر استفاده‌ مي‌شود هم‌ اكنون‌ اصلاح‌فن‌آوريهاي‌ جديد به‌ هوا اين‌ امكان‌ رامي‌دهد تا براي‌ ژنراتورهايي‌ كه‌ حداكثر30مگاولت‌ آمپر ظرفيت‌ دارند مورد استفاده‌قرار گيرد. شكل‌ (1) سيستمهاي‌ هوا،هيدروژن‌، خنك‌كنندگي‌ هيدروژني‌ داخلي‌ وسيستم‌ خنك‌كنندگي‌ هيدروژن‌ و آب‌ را كه‌توسط شركتهاي‌ زيمنس‌ و وستينگهاوس‌براي‌ اندازه‌هاي‌ مختلف‌ ژنراتورها انجام‌شده‌ است‌ مقايسه‌ مي‌كند.
ژنراتورهاي‌ الكتريكي‌، حجم‌ زيادي‌ ازهوا را مصرف‌ مي‌كنند. در جايي‌ كه‌ كيفيت‌هوا مساله‌ ساز نيست‌ ژنراتورها با سيستم‌خنك‌كنندگي‌ هواي‌ باز كه‌ بازده‌ بالايي‌ از نظرفيلتراسيون‌ و آب‌ بندي‌ محوري‌ تحت‌ فشاردارند بهترين‌ انتخاب‌ و همچنين‌ داراي‌حداقل‌ هزينه‌ است‌.

سايتهاي‌ نيروگاه‌ قدرت‌ كه‌ داراي‌ ذرات‌ريز و سولفور قابل‌ ملاحظه‌ هستند بايدژنراتورهايي‌ را كه‌ خنك‌كنندگي‌ آنها با آب‌ وهواي‌ محبوس‌ انجام‌ مي‌شود مورد بررسي‌قرار دهند. اين‌ ژنراتورها چنانچه‌ داراي ‌سيستم‌ خنك‌ كنندگي‌ با آب‌ و آب‌ بندي‌محوري‌ تحت‌ فشار با فيلترهاي‌ هواي‌جبراني‌ باشند از نظر فيزيكي‌ بزرگتر هستند.ژنراتورهايي‌ كه‌ خنك‌كنندگي‌ آنها با آب‌ وهواي‌ محبوس‌ صورت‌ مي‌گيرد ازژنراتورهايي‌ كه‌ خنك‌كنندگي‌ آنها با هواي‌ بازانجام‌ مي‌شود گران‌تر بوده‌ و بازده‌ كمتري‌ نيزدارند.
با اين‌ همه‌ در حالي‌ كه‌ ذرات‌ ريز، يك‌موضوع‌ قابل‌ بررسي‌ است‌ و وقتي‌ كه‌مساله‌اي‌ از نظر ذخيره‌سازي‌ هيدروژن‌ درنيروگاه‌ وجود ندارد عموما ژنراتورهايي‌ كه‌ باهيدروژن‌ خنك‌ مي‌شوند انتخاب‌ مناسبي‌ به‌نظر مي‌رسد. با وجود آن‌ كه‌ اين‌ نوع‌ ازژنراتور گرانترين‌ نوع‌ است‌ ولي‌ بالاترين‌بازده‌ را دارد.

سيستمهاي‌ خنك‌ كنندگي‌
طراحي‌ واحدهايي‌ كه‌ با هيدروژن‌خنك‌ مي‌شوند در مقايسه‌ با ژنراتورهايي‌ كه‌با هوا خنك‌ مي‌شوند پيچيده‌تر است‌.سيستمهايي‌ كه‌ با هيدروژن‌ خنك‌ مي‌شوندبه‌ محفظه‌اي‌ كه‌ در مقابل‌ فشار مقاوم‌ باشد ونيز به‌ آب‌ بندي‌ خاص‌ و يك‌ دستگاه‌ تهويه‌گازي‌ نياز دارند. علاوه‌ بر آن‌ سيستمهايي‌ كه‌با هيدروژن‌ خنك‌ مي‌شوند قبل‌ از آن‌ كه‌براي‌ تعمير و نگهداري‌ از سرويس‌ خارج‌شوند بايد با دي‌ اكسيد كربن‌ پاكسازي‌ شوند. همچنين‌ قبل‌ از آن‌ كه‌ مجددٹ از هيدروژن‌ پرشوند و به‌ سرويس‌ بازگردند لازم‌ است‌ بادي‌اكسيد كربن‌ پاكسازي‌ شوند. با وجود آن‌كه‌ ژنراتورهايي‌ كه‌ با هوا خنك‌ مي‌شوند ازنظر فيزيكي‌ بزرگتر از ژنراتورهايي‌ هستند كه‌با هيدروژن‌ خنك‌ مي‌شوند، با اندازه‌ يكسان ‌داراي‌ هزينه‌ اوليه‌ كمتري‌ هستند. به‌ علاوه‌تعمير آنها ساده‌تر و با هزينه‌ كمتر است‌.ژنراتورهاي‌ بزرگي‌ كه‌ با هوا خنك‌ شده‌ ومتعلق‌ به‌ شركت‌ آلستوم‌ هستند عمومٹمجهز به‌ سيستم‌ خنك‌كنندگي‌ آب‌ - هواي ‌محبوس‌ (TEWAC) هستند. در سيستم‌خنك‌كنندگي‌ آب‌ - هوا، ژنراتور به‌ وسيله‌هوا خنك‌ مي‌شود. هواي‌ گرم‌ پس‌ از آن‌ كه‌در خنك‌كن‌هاي‌ آب‌ - هوا سرد شد مجددٹوارد سيكل‌ مي‌شود. در اين‌ واحدهاهاديهاي‌ سيم‌پيچ‌ ميدان‌ روتور تو خالي‌ بوده‌و به‌ صورت‌ محوري‌ خنك‌ مي‌شوند. برخلاف‌ بخش‌ فعال‌ ژنراتورهاي‌ قديمي‌ كه‌ باهوا خنك‌ مي‌شوند، سيم‌پيچهاي‌ ميدان‌جديدتر در هر ماشين‌ داراي‌ دو بخش‌خنك‌كن‌ است‌. در بخش‌ اول‌ جريان‌ هوا اززير استوانه‌ انتهايي‌ مي‌گذرد و قبل‌ از خروج‌به‌ داخل‌ هادي‌ تو خالي‌ جريان‌ پيدا مي‌كند.جريان‌ هواي‌ خنك‌ كن‌ براي‌ بخش‌ دوم‌ ازطريق‌ يك‌ شيار فرعي‌ كه‌ در زير سيم‌ پيچ‌تعبيه‌ شده‌ است‌ صورت‌ مي‌گيرد.
هسته‌ استاتور كه‌ به‌ شكل‌ محوري‌ به‌اتاقهايي‌ تقسيم‌ شده‌ است‌ هواي‌ خنك‌ كننده‌براي‌ استاتور را فراهم‌ مي‌آورد. اين‌ كار باجريان‌ متناوب‌ هوا به‌ داخل‌ و به‌ بيرون‌اتاقكهاي‌ تهويه‌ انجام‌ مي‌شود.
توليدكنندگان‌ با اضافه‌ كردن‌ اتاقكهاي‌تهويه‌ بيشتر نسبت‌ به‌ ماشينهاي‌ ژنراتور كوتاهتر قديمي‌ توانسته‌اند ميزان‌خنك‌كنندگي‌ ژنراتور را بهينه‌ كنند. طبق‌گزارش‌ آلستوم‌، بهينه‌ سازي‌ خنك‌كنندگي‌ واين‌ واقعيت‌ كه‌ هم‌ اكنون‌ خروجيهاي‌بيشتري‌ براي‌ هواي‌ خنك‌ كن‌ روتور وجوددارد توزيع‌ دما در سيم‌پيچ‌ استاتور و هسته‌را يكنواخت‌ كرده‌ است‌.

شكستن‌ مانع‌ 300 كيلوولت‌ آمپري‌
انجام‌ اصلاحات‌، طي‌ چند سال‌ اخير برروي‌ طراحي‌ ژنراتورهايي‌ كه‌ با هوا خنك‌مي‌شوند سبب‌ شده‌ است‌ كه‌ واحدهايي‌توليد شود كه‌ تا چند سال‌ گذشته‌ فقط باژنراتورهايي‌ كه‌ با هيدروژن‌ خنك‌ مي‌شوند امكان‌پذير بود. درطول‌ چهار دهه‌ گذشته‌ظرفيت‌ ژنراتورهايي‌ كه‌ با هوا خنك‌مي‌شوند از 90 مگاولت‌ آمپر به‌ بيش‌ از 300مگاولت‌ آمپر افزايش‌ يافته‌ است‌.
يكي‌ از توليدكنندگان‌ (آلستوم‌) خروجي‌ژنراتورهايي‌ كه‌ با هوا خنك‌ مي‌شوند را تا33 درصد افزايش‌ داده‌ است‌. اين‌ كار باافزايش‌ قطر روتور و طول‌ فعال‌ آن‌ به‌ ميزان‌10 درصد اجرا شده‌ است‌. افزايش‌ خطي‌ژنراتور نيز حجم‌ Slot (يكي‌ از شيارهاي‌نگهدارنده‌ رسانا در سطح‌ روتور يا استاتوريك‌ ماشين‌ گردنده‌ الكتريكي‌) را بزرگتر كرده‌و در نتيجه‌ سيم‌پيچهاي‌ بيشتري‌ قابل‌ اضافه‌كردن‌ بود.
متاسفانه‌ وقتي‌ قطر روتور افزايش‌ داده‌مي‌شود اتلاف‌ سيم‌پيچ‌ نيز افزايش‌ مي‌يابد.بخش‌ قابل‌ توجهي‌ از اتلاف‌ سيم‌ پيچي‌ناشي‌ از اصطكاك‌ سطح‌ است‌.
ژنراتورها ديگري‌ كه‌ توسط آلستوم‌تكميل‌ شده‌ يك‌ ماشين‌ 50 هرتز 500مگاولت‌ آمپري‌ است‌. اين‌ ماشين‌ يك‌پيشرفت‌ عمده‌ در فن‌ آوري‌ ژنراتورهايي‌ كه‌با هوا خنك‌ مي‌شوند بوده‌ و خنك‌كنندگي‌آن‌ به‌ شكل‌ معكوس‌ امكان‌پذير شد. درخنك‌كنندگي‌ معكوس‌، فنها در بالا دست‌كولر قرار مي‌گيرند و به‌ اين‌ ترتيب‌ بخش‌فعال‌ ژنراتور به‌ طور مستقيم‌ و بدون ‌هيچ‌گونه‌ پيش‌ گرمايشي‌ از هوايي‌ كه‌ ازكولرها مي‌آيد بهره‌مند مي‌شود. هوايي‌ كه‌ به‌طور مستقيم‌ از فنها تامين‌ شده‌ است‌همچنان‌ كه‌ از درون‌ فن‌ عبور مي‌كند،پيش‌گرم‌ مي‌شود.
هوا در پايين‌ دست‌ كولرها در ابتدا ازيك‌ ناحيه‌ مخلوط عبور مي‌كند كه‌ توزيع ‌همگني‌ از هواي‌ سرد را به‌ ورودي‌ ژنراتورمي‌رساند. حتي‌ اگر يك‌ كولر، خارج‌ ازسرويس‌ باشد اين‌ نوع‌ از خنك‌كنندگي‌ به‌ژنراتور اين‌ امكان‌ را مي‌دهد كه‌ با75 درصداز خروجي‌ اسمي‌ خود كار كند.
محفظه‌ ژنراتور 500 مگاولت‌ آمپرآلستوم‌ كه‌ با هوا خنك‌ مي‌شود كاملاجوشكاري‌ شده‌ و داراي‌ ياتاقانهايي‌ است‌ كه‌بر روي‌ محفظه‌اي‌ نصب‌ شده‌ و از يك‌سيستم‌ خنك‌كننده‌ بسته‌ استفاده‌ مي‌كند.ابتكار طراحي‌ عمده‌ ديگر آن‌ است‌ كه‌ژنراتور با راه‌ آهن‌ قابل‌ حمل‌ونقل‌ است‌.

بررسي‌ اصلاحات‌
در حالي‌ كه‌ بيش‌ از 20 سال‌ از كار اغلب‌نيروگاههاي‌ قدرت‌ ايالات‌متحده‌ مي‌گذرد متخصصان‌ نيروگاههاي‌ توليد برق‌ در جست‌و جوي‌ راههايي‌ بوده‌اند تا قابليت‌ اعتماد ودر دسترس‌ بودن‌ ژنراتورهاي‌ قديمي‌ رابهبود بخشند. غير از جايگزيني‌ ژنراتورها،برخي‌ از ژنراتورهاي‌ قديمي‌تر را معمولا مي‌توان‌ با سيم‌ پيچي‌ مجدد استاتورها ونوكردن‌ exciter (ژنراتور كمكي‌ كوچكي‌ كه‌جريان‌ ميداني‌ لازم‌ را براي‌ ژنراتوري‌ باجريان‌ متناوب‌ فراهم‌ مي‌كند) اصلاح‌ كرد.
دبليوجي‌ مور مدير مهندسي‌ كويل‌برق‌ ملي‌ در كلمبوس‌ اوهايو مي‌گويد كه‌ درهنگام‌ اصلاح‌ و بازسازي‌ ژنراتورهاي‌الكتريكي‌، يكي‌ از اولين‌ مراحل‌، آن‌ است‌ كه‌شرايط فورجينگ‌ روتور ارزيابي‌ شود.
در غير از مواردي‌ كه‌ مسائل‌ جدي‌ بروز كندجايگزين‌ كردن‌ روتور، لازم‌ نيست‌. هرگونه‌تركي‌ كه‌ در سوراخها پيدا شود عموما ازفركانس‌ پايين‌ و ناشي‌ از تنشهاي‌ چرخشي‌در اثناي‌ شروع‌ بكار و توقف‌ واحد است‌.
با اين‌ همه‌ چنين‌ تركهايي‌ را نبايد ناديده‌گرفت‌ چرا كه‌ مي‌توانند منجر به‌ گسيختگي‌كاتاستروفيك‌ روتور شوند. به‌ گفته‌ >مور<قبل‌ از بازگرداندن‌ يك‌ روتور قديمي‌تر به‌سرويس‌ بايد سوراخها به‌ طور كامل‌ بازرسي‌شوند تا شرايط كيفي‌ آنها براي‌ كاركرددرازمدت‌ تاييد شود.
علاوه‌ بر بازرسي‌ چشمي‌ سوراخ‌،آزمايشهاي‌ مغناطيسي‌ و ماوراي‌ بنفش‌UT)) نيز بايد اجرا شود. هرگونه‌ مسأله‌سطحي‌ را مي‌توان‌ با سنگ‌ زدن‌ سوراخ‌،اصلاح‌ كرد. با اين‌ حال‌، تركهاي‌ عميق‌تر بايدبا سوراخ‌ كردن‌ برداشته‌ شوند.
محلهاي‌ دندانه‌ دار روتور مي‌تواند درشعاعهاي‌ ماهيچه‌اي‌ بالاي‌ دندانه‌، ايجادترك‌ كند. اين‌ سوراخها را مي‌توان‌ با بازرسي‌چشمي‌، آزمايش‌ با جريان‌ گردابي‌ (آزمايش‌غير تخريبي‌ كه‌ در آن‌ تغيير امپدانس‌ يك‌كويل‌ آزمايش‌ كه‌ به‌ نزديك‌ نمونه‌ هادي‌آورده‌ شده‌ است‌ جريانهاي‌ گردابي‌ ايجادشده‌ به‌ وسيله‌ كويل‌ را از خود نشان‌ مي‌دهدو در نتيجه‌ برخي‌ از خواص‌ يا معايب‌ نمونه‌را آشكار مي‌كند)، نافذ رنگي‌ (مايعي‌ داراي‌رنگ‌ كه‌ براي‌ تشخيص‌ تركها يا ساير معايب‌سطحي‌ مواد غير مغناطيسي‌ بكار مي‌رود) ويا با آزمايش‌ ذرات‌ مغناطيسي‌ مرطوب‌،آشكار كرد. با اين‌ همه‌ >مور< مي‌گويد: >هيچ‌گزارشي‌ از وقفه‌ اجباري‌ ناشي‌ از تركهاي‌دندانه‌دار، ثبت‌ نشده‌ است‌. تركهاي‌ كوچك‌را مي‌توان‌ با بزرگ‌ كردن‌ شعاع‌ ماهيچه‌،برداشت‌ به‌ طور ي‌ كه‌ در عين‌ حال‌ تركهاي‌بزرگتر نياز به‌ برداشتن‌ بالاي‌ دندانه‌ها وسپس‌ بازسازي‌ يك‌ حلقه‌ حايل‌ طولاني‌تردارند<.
هنگامي‌ كه‌ رطوبت‌، وجود داشته‌ باشد حلقه‌هاي‌ حايل‌ غير مغناطيسي‌ از جنس‌5Cr 18Mn نسبت‌ به‌ تنش‌ ترك‌ خوردگي‌تاثير پذيرند و در اثناي‌ هر گونه‌ اصلاح‌ژنراتور بايد تعويض‌ شوند. معمولا اين‌ نوع‌حلقه‌ها با حلقه‌هايي‌ از جنس‌18 Cr 18Mn تعويض‌ مي‌شوند. طبق‌گزارش‌ G.E. فولاد ضد زنگ‌ غير مغناطيسي‌18-18 نسبت‌ به‌ تنش‌ ترك‌ خوردگي‌ مقاوم‌است‌.
ترك‌ خوردگي‌ شيار فنري‌ شبه‌ بست‌(نوعي‌ فنر كه‌ به‌ عنوان‌ بست‌ استفاده‌مي‌شود) به‌ وسيله‌ نيروهاي‌ متناوب‌ حلقه‌حايل‌ مخروطي‌ در حال‌ كشش‌ بالاي‌دندانه‌ها ايجاد مي‌شود (شكل‌ 2). با اين‌وجود >مور< مي‌گويد: اين‌ تركها به‌ سادگي‌ بايك‌ آزمايش‌ نفوذ پذيري‌ فلورسنت‌ مغناطيسي‌ مرطوب‌، آشكار مي‌شوند. مشابه‌ترك‌ خوردگي‌ دندانه‌ روتور، تركهاي‌ درون‌شيار فنر شبه‌ بست‌ را مي‌توان‌ با بزرگ‌ كردن‌شعاع‌، اصلاح‌ كرد.

سيم‌ پيچها و عايق‌ بندي‌
سيم‌ پيچهاي‌ مسي‌ روتور، عمرنامحدودي‌ دارند ولي‌ وقتي‌ كه‌ يك‌ روتورتحت‌ تاثير گرماي‌ بيش‌ از حد قرار گيرد،مس‌، نرم‌ مي‌شود. اگر مس‌ بيش‌ از حد نرم‌شده‌ باشد، آزمايش‌، سختي‌ آن‌ را تعيين‌خواهد كرد. >مور< مي‌گويد: بازرسي‌ چشمي‌بايد هرگونه‌ اعوجاج‌ اضافي‌ را مشخص‌ كند.
ترك‌ خوردگي‌ درپيچهاي‌ مسي‌ روتور درروتورهايي‌ كه‌ روي‌ حلقه‌هاي‌ حايل‌ آن‌محور كوتاهي‌ نصب‌ شده‌ باشد عادي‌ است‌.
اين‌ ترك‌ خوردگيها را مي‌توان‌ با يك‌ آزمايش‌نافذ رنگي‌ بررسي‌ كرد. سيم‌ پيچهاي‌ مسي‌باز پخت‌ شده‌ با مقاومت‌ كم‌ كه‌ در واحدهاي ‌قديمي‌ نصب‌ شده‌اند بايد با نوعي‌ مس‌ بامقاومت‌ بيشتر جابه‌جا شوند. طبق‌ گفته‌>مور< اين‌ ماده‌ (مس‌ با مقاومت‌ بيشتر)نسبت‌ به‌ تغيير شكل‌، مقاوم‌ است‌. متاسفانه‌يك‌ سيم‌ پيچ‌ باز پيچيده‌ شده‌ جديد مسي‌ ازمسهاي‌ قديمي‌ كه‌ مجددا استفاده‌ شده‌ باشدگرانتر است‌.
اصلاحاتي‌ كه‌ در عايق‌ بندي‌ و صفحات‌لغزش‌ از جنس‌ ماده‌اي‌ با ضريب‌ اصطكاك‌ كم‌ انجام‌ شده‌ است‌ اعوجاج‌ سيم‌پيچهاي‌روتور را به‌ حداقل‌ رسانده‌ و كاركردژنراتورها را اصلاح‌ كرده‌ است‌ برخلاف‌سيم‌پيچهاي‌ روتوري‌ كه‌ به‌ صورت‌ اقتصادي‌مجددا پيچيده‌ شده‌ باشند عموما با سيم‌پيچهاي‌ استاتور جايگزين‌ مي‌شوند. باپيشرفتهايي‌ كه‌ هم‌ اكنون‌ در سيستمهاي‌عايق‌ بندي‌ انجام‌ شده‌، عايق‌بندي‌ كمتري‌مورد نياز است‌.
كاربرد ژنراتورهاي‌ الكتريكي‌ دراثردرجه‌ حرارت‌ حداكثر مجاز رساناهاي‌ مسي‌در سيم‌ پيچهاي‌ استاتور و نيز دراثر انتقال‌حرارت‌ در درون‌ عايق‌بندي‌، محدود شده‌است‌. با اين‌ وجود كاركرد ژنراتور در درجه‌ حرارتهاي‌ بالاتر براي‌ مس‌هاي‌ هادي‌ درهنگامي‌ امكان‌پذير است‌ كه‌ كلاس‌ حرارتي‌بالاتري‌ براي‌ ماده‌ عايق‌ بندي‌، استفاده‌ شده‌باشد. واضح‌ است‌ كه‌ با كاركرد ژنراتور دردرجه‌ حرارتهاي‌ بالاتر، خروجي‌ ژنراتور افزايش‌ پيدا مي‌كند. هم‌ اكنون‌ براي‌ كاركردژنراتور در درجه‌ حرارتهاي‌ بالاتر، موادجديدي‌ وجود دارد. به‌ دليل‌ اين‌ كه‌عايق‌بندي‌ جديد، مقاومت‌ حرارتي‌ كمتري‌دارد انتقال‌ حرارت‌ ميله‌هاي‌ استاتور، بهبودپيدا كرده‌ و خروجي‌ ژنراتور افزايش‌ مي‌يابد.
با وجود آن‌ كه‌ براي‌ ژنراتورهاي‌ بزرگترهنوز هم‌ روش‌ خنك‌ كنندگي‌ به‌ وسيله‌هيدروژن‌ مورد استفاده‌ قرار مي‌گيرداصلاحات‌ اخير در سيستمهاي‌ خنك‌كنندگي‌با هوا و همچنين‌ عايق‌ بندي‌ به‌ روش‌ خنك‌كنندگي‌ با هوا اجازه‌ داده‌ است‌ تا باسيستمهاي‌ خنك‌كنندگي‌ به‌ وسيله‌ هيدروژن‌براي‌ ژنراتورهايي‌ كه‌ حداكثر ظرفيت‌ آنها500 مگاولت‌آمپر است‌ رقابت‌ كنند. طبق‌نظر سازندگان‌، استفاده‌ از ژنراتورهايي‌ كه‌ باهوا خنك‌ مي‌شوند و ظرفيتشان‌ بيش‌ از50مگاولت‌ آمپر باشد موضوعي‌ است‌ كه‌فقط زمان‌، آن‌ را حل‌ خواهد كرد.

+ نوشته شده در  شنبه بیست و چهارم بهمن 1388ساعت 21:18  توسط 66  | 

شكل‌گيري‌ نظامهاي‌ اطلاعاتي‌ كارآمد از وجوه‌ مشخصه‌ انقلاب‌ علمي‌ - فني‌ در جوامع‌پيشرفته‌ امروزي‌ است‌. با اين‌ حال‌ دانش‌ جديد را به‌ هيچ‌ وجه‌ نمي‌توان‌ به‌ انبوه‌ اطلاعات‌گردآوري‌ شده‌ در اشكال‌ متنوع‌ آن‌ يعني‌ كتاب‌، نشريات‌ و سامانه‌هاي‌ نوين‌ اطلاعاتي‌ ازقبيل‌ اينترنت‌ يا كتب‌ الكترونيكي‌، كاهش‌ داد. در حقيقت‌ دانش‌، تنها به‌ موضوع‌ خاصي‌محدود نمي‌شود بلكه‌ شكلهاي‌ متنوع‌ تفكر موجود نيز در گسترش‌ آن‌ موثر است‌ به‌نحوي‌كه‌ شناخت‌، نمي‌تواند بدون‌ تفكر سازنده‌ تنها بازتاب‌ ساده‌ واقعيت‌ در شعور آدمي‌باشد.اين‌ تفكر سازنده‌، آفريننده‌ اشكال‌ مختلف‌ فرايند شناخت‌ است‌. بنابراين‌ نحوه‌ صحيح‌ برخورد با منابع‌ اطلاعاتي‌ خارجي‌، بي‌شك‌ برخورد نقادانه‌ با هدف‌ باز توليداطلاعات‌، نزد افراد است‌.
حجم‌ عظيم‌ اطلاعاتي‌ كه‌ امروزه‌ به‌ دليل‌ انقلاب‌ اطلاعاتي‌ با ابعاد جهاني‌ آن‌ در اختيارما قرار گرفته‌، تنها در چارچوب‌ روشهاي‌ صحيح‌ علمي‌ قابل‌ استفاده‌ است‌. تلقي‌ اين‌مجموعه‌ اطلاعات‌ به‌ مثابه‌ گنجينه‌ فنا نشدني‌ از بسته‌هاي‌ اطلاعاتي‌ كاملا درست‌،برخوردي‌ كاملا ساده‌ انديشانه‌ با فرايند انتقال‌ علم‌ و فن‌ آوري‌ است‌.بر اين‌ اساس‌ در اين‌ نوشتار به‌ نقد و بررسي‌ يكي‌ از موارد مطرح‌ تحت‌ نام‌ نقش‌ مؤلفه‌ صفر جريان‌ در حفاظت‌ديفرانسيل‌ ترانس‌ خواهيم‌ پرداخت‌.

پايداري‌ حفاظت‌ ديفرانسيل‌ ترانس‌ قدرت‌
حفاظت‌ ديفرانسيل‌ ترانس‌ قدرت‌ در رديف‌حفاظتهاي‌ كاملا انتخابي‌ و سريع‌، يكي‌ ازكارآمدترين‌ حفاظتهاي‌ الكتريكي‌ مرسوم‌ درسيستمهاي‌ كنترل‌ و حفاظت‌ شبكه‌هاي‌الكتريكي‌ است‌.
به‌دليل‌ اهميت‌ اين‌ نوع‌ حفاظت‌، تقريباتمام‌ كتابها و منابع‌ تخصصي‌، فصلي‌ را به‌اين‌ موضوع‌ اختصاص‌ مي‌دهند، با اين‌ حال ‌كمتر منبعي‌ را مي‌توان‌ يافت‌ كه‌ به‌ تمام‌مسائل‌ فني‌ مرتبط با موضوع‌ پرداخته‌ باشد. حتي‌ گاهي‌ پيش‌ مي‌آيد كه‌ مطلب‌ يك‌ منبع‌معتبر، حاوي‌ يك‌ لغزش‌ غير قابل‌چشم‌پوشي‌ در اين‌ زمينه‌ باشد. براي‌ روشن‌شدن‌ مطلب‌ به‌طور خلاصه‌ به‌ اين‌ موضوع‌خواهيم‌ پرداخت‌.
هر جا سخن‌ از حفاظت‌ موضعي‌ است‌،خودبه‌خود بحث‌ پايداري‌ در قبال‌ خطاهاي ‌خارج‌ از ناحيه‌، مطرح‌ مي‌شود به‌نحوي‌ كه‌سمت‌ و سوي‌ انتخاب‌ تجهيزات‌، فن‌آوري‌ساخت‌ قطعات‌، همچنين‌ طرحهاي‌ حفاظتي‌ مورد استفاده‌، عملا تحت‌ الشعاع‌ آن‌ قرار مي‌گيرد.
از آن‌جا كه‌ ترانس‌ قدرت‌، يك‌ مبدل‌الكترومغناطيسي‌ با امكان‌ تبادل‌ انرژي‌ دراشكال‌ مختلف‌ الكتريكي‌ و مغناطيسي‌است‌ گاهي‌ بعضي‌ از مولفه‌هاي‌ الكتريكي‌ درانتقال‌ از يك‌ سو به‌ سوي‌ ديگر ترانس‌، تغيير شكل‌ مي‌دهند. براي‌ مثال‌ در ترانسهاي‌حاوي‌ اتصالات‌ مثلث‌، مولفه‌ صفر جريان‌الكتريكي‌ در سمت‌ ستاره‌ به‌ واسطه‌ ميدان‌مغناطيسي‌ هسته‌، قابل‌ انتقال‌ به‌ سمت‌ ديگرنيست‌. در واقع‌ مولفه‌ صفر شار مغناطيسي ‌حاصل‌ از اين‌ جريان‌ توسط جريانهاي‌گردشي‌ كه‌ عمدتا در مسير سيم‌ پيچي‌ مثلث‌جاري‌ مي‌شود قبل‌ از آن‌كه‌ موفق‌ به‌ ايجاد نيروي‌ محركه‌ الكتريكي‌ لازم‌ در ثانويه‌ شود،خنثي‌ مي‌شود. به‌ اين‌ ترتيب‌ با وجود تعادل‌الكترومغناطيسي‌ در طرفين‌ ترانس‌، تعادل‌جرياني‌ بين‌ اوليه‌ و ثانويه‌، برقرار نخواهدشد. اين‌ امر مي‌تواند